CCTV TASVIRLARIGA RAQAMLI ISHLOV BERISH VOSITALARI, ALGORITMLAR VA MODELLARINING QIYOSIY TAHLILI

Mualliflar

  • Jamshid Hamzayev Muallif

{$ Etel}:

CCTV, raqamli tasvirlarga ishlov berish, obyektlarni aniqlash, Gauss filtri, Sobel operatori, Canny edge detection, Haar cascade, YOLO, Optical Flow, Background Subtraction, Deep Learning, CNN, Median filter, Bilateral filter, Gabor filter.

Abstrak

Ushbu maqola CCTV tasvirlariga raqamli ishlov berish sohasidagi keng qamrovli tadqiqotni taqdim etadi. Unda avvalo tasvirlarni oldindan qayta ishlash (noise reduction, filtering), chegara va xususiyatlarni ajratish (edge detection, feature extraction), obyektlarni aniqlash va lokalizatsiya (classical va chuqur modellar), hamda harakatni kuzatish va fonni ajratish (motion analysis, background modelling) kabi bosqichlar bo‘yicha eng ko‘p ishlatiladigan algoritmlar va modellarning matematik asoslari hamda amaliy xususiyatlari batafsil tahlil qilingan. Har bir usulning ishlash printsipi (masalan, Gauss yadrosi bilan konvolyutsiya, Sobel va Canny uchun gradient va non-maximum suppression, YOLO va CNN uchun konvolyutsion qatlamlar va bounding box regressiyasi), afzalliklari (tezlik, aniqlik, real vaqtda ishlash qobiliyati) hamda kamchiliklari (shovqin sezgirligi, hisoblash resurslari talabi, kichik obyektlarni aniqlashdagi muammolar) qiyosiy ravishda taqdim etilgan.

##plugins.themes.default.displayStats.downloads##

##plugins.themes.default.displayStats.noStats##

Bibliografik havolalar

1. Kuchkarov T. A., Hamzayev J. F., Ochilov T. D. Intelektual transport tizimi ilovalari uchun sun'iy intelekt texnologiyalaridan foydalanish // Berdaq nomidagi QDU Axborotnomasi, no. 2 (51) 2021, -b. 114-120

2. Ghani, K.A. and Yosri, H. (2011) Application of Artificial Intelligent for Armour Vehicle Detection Using Digital Image Processing for Aerial Application. Proceedings of the International Conference on Advanced Science, Engineering and Information Technology, Putrajaya, 14-15 January 2011, -pp. 173-177

3. M. Rakhimov, J. Elov, U. Khamdamov, S. Aminov and S. Javliev, "Parallel Implementation of Real-Time Object Detection using OpenMP," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, doi: 10.1109/ICISCT52966.2021.9670146. -pp. 1-4

4. Wu, J.P., Liu, Z.B., Li, J.X., Gu, C.D., Si, M.X. and Tan, F.Y. (2009) An Algorithm for Automatic Vehicle Speed Detection Using Video Camera. Proceedings of 4th International Conference on Computer Science & Education, Nanjing, 25-28 July 2009, -pp.193-196

5. Ozkurt, C. and Camci, F. (2009) Automatic Traffic Density Estimation and Vehicle Classification for Traffic Surveillance Systems Using Neural Networks. Mathematical and Computational Applications, 14, -pp. 187-196

6. Vanaja, A., Hema Kumar, G. and Sri Rama Krishna, K. (2011) A Novel Approach for Efficient Traffic Flow Density Estimation. International Journal of Advanced Engineering Sciences and Technologies, 5, -pp. 269-276

7. Hoffman, C., Dang, T. and Stiller, C. (2004) Vehicle Detection Fusing 2D Visual Features. Proceedings of IEEE Intelligent Vehicles Symposium, Parma, 14-17 June 2004, -pp. 280-285

8. Ha, D., Lee, J. and Kim, Y. (2004) Neural-Edge-Based Vehicle Detection and Traffic Parameter Extraction. Image and Vision Computing, 22,

http://dx.doi.org/10.1016/j.imavis.2004.05.006 . -pp. 899-907

9. Liu, Z., Li, X. and Leung, X. (2001) Fuzzy Measures for Vehicle Detection. Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, 2-5 December 2001, -pp. 848-851

10. Jain, I. and Rani, B. (2010) Vehicle Detection Using Image Processing and Fuzzy Logic. International Journal of Computer Science & Communication, 1, -pp. 255-257

11. Bharti Sh., Vinod K. K., Arvind K. G., Akansha S., The Automated Vehicle Detection of Highway Traffic Images by Differential Morphological Profile. Journal of Transportation Technologies, 2014, 4, -pp. 150-156

12. Temurbek Kuchkorov, Jamshid Hamzayev, Farrux Baxriddinov. Avtotransportlar harakatini tartibga solishning noravshan mantiqqa asoslangan modeli. Journal of Digital transformation and artificial intelligence. 1/3. -pp. 75-84. 2023.

13. Kuchkorov Temurbek, Khamzaev Jamshid. Intelligent analysis of CCTV cameras images and development of an algorithm for controlling the traffic lights installed on roads based on a knowledge base. Journal of Pedagogical sciences and teaching methods. 4/38. -pp. 86-89. 2024.

Nashr qilingan

2025-12-15

Nashr

Bo'lim

Technical Sciences

##plugins.generic.recommendBySimilarity.heading##

{$ start} - {$ tugatish} {$ to'liq} dan

##plugins.generic.recommendBySimilarity.advancedSearchIntro##