ENERGY ESTIMATES OF A SPECIAL FORM FOR SOLUTIONS OF THIRD-ORDER EQUATIONS OF THE PSEUDO-ELLIPTIC TYPE

Авторы

  • Abdukomil Khashimov Автор

Ключевые слова:

third-order equation, bounded domains, unbounded domains, boundary value problem, energy estimates, Saint-Venant’s principle, generalized solution, cutoff function

Аннотация

 This article considers a boundary value problem for a third-order equation of the “pseudoelliptic” type. Special energy estimates are established for the generalized solution of the equation. With the help of which you can build a solution to the boundary value problem in unlimited areas, in classes of functions growing at infinity, depending on the geometric characteristics of the boundaries of the area. 

Скачивания

Данные по скачиваниям пока не доступны.

Биография автора

  • Abdukomil Khashimov

     Candidate of Physical and Mathematical Sciences, Associate Professor

    Associate Professor of Higher and Applied Mathematics, Tashkent State University of Economics 

Библиографические ссылки

Kozhanov A. I. Boundary Value Problems for Equations of Mathematical Physics of Odd Order. – Novosibirsk, 1990. – 130 p.

Khashimov A. R., Smetanova D. On the Uniqueness Classes of Solutions of Boundary Value Problems for Third-Order Equations of the Pseudo-Elliptic Type // Axioms. – 2020. – Vol. 9. – P. 80.

Flavin J. N. On Knowles version of Saint-Venant’s principle in the two dimensional electrostatics // Arch. Rational Mech. And Anal. – 1974. – Vol. 53. – P. 53- 62.

Marin M., Oechsner A., Craciun E. M. A generalization of the SaintVenant’s principle for an elastic body with dipolar structure // Continuum Mechanics and Thermodynamics. – 2020. – Vol. 32(1). – P. 269-278.

Xiao B., Sun Z., Shi S. On random elastic constraint conditions of Levinson beam model considering the violation of Saint-Venant’s principle in dynamic // European Physical Journal Plus. – 2020. – Vol. 135(2). – P. 168.

Todorcˇevic´ V. Subharmonic behavior and quasi-conformal mappings // Anal. Math. Phys. – 2019. – Vol. 9. – P. 1211-1225.

Roohi M., Soleymani K., Salimi M. Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint-Venant equation // Modeling Earth Systems and Environment. – 2020. – Vol. 6(2). – P. 645-658.

Oleinik O. A., Iosifyan G. A. A priori estimates of solutions of the first boundary value problem for the system of equations of the theory of elasticity and their applications // Uspekhi Mat. Nauk. – 1979. – Vol. 32(5). – P. 193.

Oleinik O. A., Iosifyan G. A. On the principle of Saint-Venant in the plane theory of elasticity // DAN USSR. – 1978. – Vol. 239(3). – P. 530.

Oleinik O. A., Iosifyan G. A. The Saint-Venant principle in the plane theory of elasticity and boundary value problems for the biharmonic equation in unbounded domains // Siberian Mathematical Journal. – 1978. – Vol. 19(5). – P. 1154.

Oleinik O. A. On the behavior of solutions of linear parabolic systems of differential equations in unbounded domains // Advances in Mathematical Sciences. – 1975. – Vol. 30(2). – P. 219-220.

Fabiano N., Nikolic´ N., Shanmugam T. et al. Tenth order boundary value problem solution existence by fixed point theorem // J. Inequal Appl. – 2020. – P. 166.

Faminskii A. V., Larkin N. A. Odd-order quasi-linear evolution equations posed on a bounded interval // Bol. Spc. Paran. Mat. (3s.). – 2010. – Vol. 28(1). – P. 67-77.

Freire I. L., Sampaio J. C. S. Nonlinear self-adroitness of a generalized fifth-order KdV equation // J. Phys. A: Math. Theor. – 2012. – Vol. 45. – P. 032001 (7pp).

Shanmugam T., Muthiah M., Radenovic´ S. Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed-Point Theorem // Axioms. – 2019. – Vol. 8. – P. 129.

Khashimov A., Yakubov S. On some properties of solutions of the Cauchy problem for a non-stationary equation of the third order of composite type // Ufa Mathematical Journal. – 2014. – Vol. 6(4). – P. 139-148.

Khashimov A. R., Smetanova D. Nonlocal Problem for a Third-Order Equation with Multiple Characteristics with General Boundary Conditions // Axioms. – 2021. – Vol. 10. – P. 110.

Khashimov A. R. On the uniqueness of solutions of the second boundary value problem for a third order equation of composite type in unbounded domains // Bulletin of the Samara Technical University, Series of Physical and Mathematical Sciences. – 2012. – No. 2(27). – P. 18-25.

Опубликован

2025-03-19

Выпуск

Раздел

Экономика

Как цитировать

ENERGY ESTIMATES OF A SPECIAL FORM FOR SOLUTIONS OF THIRD-ORDER EQUATIONS OF THE PSEUDO-ELLIPTIC TYPE. (2025). Инновации в науке и технологиях, 2(3), 368-374. https://innoist.uz/index.php/ist/article/view/698

##plugins.generic.shariff.share##

Похожие статьи

11-20 из 34

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.