KO‘P-TUZILMALI MUHITDA TOZALOVCHI ROBOT UCHUN DISTRIBUTIONAL REINFORCEMENT LEARNING ASOSIDAGI MARSHRUT REJALASHTIRISH STRATEGIYASI
Keywords:
Muhitda tozalovchi robot, Path – planning, Distributional reinforcement learning, DQN Network, Sub – reward mechanismAbstract
Ushbu maqola nomaʼlum muhitlarda harakatlanuvchi tozalovchi robot uchun yangi marshrut rejalashtirish strategiyasini taklif etadi. Taklif qilingan yondashuv Lightweight Learned Image Denoising with Instance Adaptation (LIDIA) va Deep Q-Network (DQN) texnologiyalarini yagona ramkaga (framework) integratsiyalash orqali amalga oshiriladi. Ushbu kombinatsiya robotlarga ko‘p obʼyektli hududlarda to‘qnashuvsiz harakatlanish imkonini beradi. Birinchi bosqichda, muhitning chuqurlik tasvirlari robotning o‘rnatilgan kamerasidan olinadi. Bu xom tasvirlar odatda shovqinli bo‘lgani sababli, LIDIA texnologiyasi qo‘llanilib, maʼlumotlar kalibrlanadi va tasvir sifati yaxshilanadi.
Downloads
References
[1] R. Arrais, M. Oliveira, C. Toscano, G. Veiga, A mobile robot based sensing approach for assessing spatial inconsistencies of a logistic system, J. Manuf. Syst. 43 (2017) 129–138.
[2] B. Hichri, J.C. Fauroux, L. Adouane, I. Doroftei, Y. Mezouar, Design of cooperative mobile robots for co-manipulation and transportation tasks, Robot. Comput. Integr. Manuf. 5
[3] F. Hennecke, J. Bomer, ¨ R.H. Heim, Modification of an automated precision farming robot for high temporal resolution measurement of leaf angle dynamics using stereo vision, MethodsX. 14 (2025) 103169.
[4] K.S. Suresh, R. Venkatesan, S. Venugopal, Mobile robot path planning using multi-objective genetic algorithm in industrial automation, Soft. comput. 26 (15) (2022) 7387–7400.
[5] T.T. Mac, T.D. Nguyen, H.K. Dang, D.T. Nguyen, X.T. Nguyen, Intelligent agricultural robotic detection system for greenhouse tomato leaf diseases using soft computing techniques and deep learning, Sci. Rep. 14 (1) (2024) 23887.
[6] H.A. Bui, T.T. Mac, X.T. Nguyen, A Human tracking system for the rocker-bogie mobile robot utilizing the YOLOv8 network, Vietnam J. Comput. Sci. (2025) 1–22.
[7] H.T. Tran, D.T. Tran, M.T. Nguyen, T.C. Vu, Intelligent mobile robot for contagious disease treatments in hospitals, MethodsX. 13 (2024) 102941.
[8] K.C. Park, H. Chung, J.G. Lee, Dead reckoning navigation for autonomous mobile robots, IFAC Proceed. Volumes 31 (3) (1998) 219–224. March.
[9] G.-S. Cai, H.-Y. Lin, S.-F. Kao, Mobile robot localization using GPS, IMU and Visual odometry, in: 2019 International Automatic Control Conference (CACS), Keelung, Taiwan, 2019, pp. 1–6, https://doi.org/10.1109/CACS47674.2019.9024731.
[10] J. Hanzel, F. Duchon, ˇ J. Rodina, P. P´ azsto, ´ Global navigation systems for mobile robots, Int. J. Systems Appl., Eng. Dev. 7 (5) (2013).
[11] Y. Yun, J. Jin, N. Kim, J. Yoon, and C. Kim. Outdoor localization with optical navigation sensor, IMU and GPS. 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). [12] H. Yin, X. Xu, S. Lu, et al., A survey on global LiDAR localization: challenges, advances and open problems, Int. J. Comput. Vis. 132 (2024) 3139–3171.
[13] Y. He, F. Ma, Visual navigation method and simulation validation, in: 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 2023, pp. 1–4, https://doi.org/10.1109/ICTIS60134.2023.10243758.
[14] YD.V. Yasuda, LEG. Martins, FA.M. Cappabianco. Autonomous Visual Navigation for Mobile robots: A systematic literature review. ACM Computing Surveys (CSUR), Volume 53, Issue 1 (13), 1–34.
[15] G. Vaksman, M. Elad, P. Milanfar, Lidia: Lightweight learned image denoising with instance adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 524–525.
[16] M.G. Bellemare, W. Dabney, M. Rowland, Distributional Reinforcement Learning, MIT Press, 2023.
[17] M. Frank, M. Plaue, F.A. Hamprecht, Denoising of continuous-wave time-offlight depth images using confidence measures, Optical Eng. 48 (7) (2009) 077003. - 077003.
[18] J. Xie, R.S. Feris, S.S. Yu, M.T. Sun, Joint super resolution and denoising from a single depth image, IEEe Trans. Multimedia 17 (9) (2015) 1525–1537.
[19] S. Patil, S. Kukreja, Deep reinforced cognitive analytics algorithm (DRCAM): an advanced method to early detection of cognitive skill impairment using deep learning and reinforcement learning, MethodsX. 14 (2025) 103277.
[20] Y. Zuo, Q. Wu, Y. Fang, P. An, L. Huang, Z. Chen, Multi-scale frequency reconstruction for guided depth map super-resolution via deep residual network, IEEE Trans. Circuits Systems Video Technol. 30 (2) (2019) 297–306.
[21] Y. Zuo, Q. Wu, Y. Fang, P. An, L. Huang, Z. Chen, Multi-scale frequency reconstruction for guided depth map super-resolution via deep residual network, IEEE Trans. Circuits Syst. Video Technol. 30 (2) (2019) 297–306.
[22] C. Zhang, CuFusion2: accurate and denoised volumetric 3D object reconstruction using depth cameras, IEEe Access. 7 (2019) 49882–49893.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Terms of our Journal