SPECTRAL AND THRESHOLD ANALYSIS OF THE LAPLACIAN WITH NON-LOCAL POTENTIAL IN FOUR-DIMENSIONAL LATTICE
Keywords:
Discrete Schrödinger operators, essential spectrum, threshold resonance, eigenvalues, latticeAbstract
Eigenvalue behaviour of a family of discrete Schrödinger operators depending on parameter is studied on the three-dimensional lattice . The non-local potential is described by the Kronecker delta function and the shift operator. The characteristics of the Fredholm determinant at values of below the essential spectrum and their dependence on the parameters are studied. We also show that the essential spectrum absorbs the threshold eigenvalue and threshold resonance
Downloads
References
Berkolaiko G., Carlson R., Fulling S. A. and Kuchment P. A. Quantum Graphs and Their Applications,Contemp. Math. 2006, 415.
Berkolaiko G. and Kuchment P. A., Introduction to Quantum Graphs, AMS Mathematical Surveys and Monographs. 2012, 186.
Chung F., Spectral Graph Theory, CBMS Regional Conf. Series Math., Washington DC. 1997.
Exner P., Keating J. P., Kuchment P. A., Sunada T. and Teplyaev A. (eds.), Analysis on Graphs and Its Applications, Proc.Symp. Pure Math. 77, AMS Providence, 2008.
Grigor’yan A., Heat kernels on manifolds, graphs and fractals, in: European Congress of Mathematics, Barcelona, July 10-14, 2000, Progress in Mathematics 201, BirkhAauser,pp. 2001, p.393-406.
Korotyaev E. and Saburova N., Schrödinger operators on periodic discrete graphs, arXiv:1307.1841 2013.
Post O., Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics 2039, Springer, 2012.
Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I., The Threshold Effects for the Two-particle Hamiltonians on Lattices, Comm.Math.Phys. 262, 2006, p.91-115.
Bellissard J. and Schulz-Baldes H., Scattering theory for lattice operators in dimension , arXiv:1109.5459v2, 2012
Exner P., Kuchment P. A. and Winn B., On the location of spectral edges in Z-peridoc media, J. Phys. A. 43, 474022 2010.
Hiroshima F., Sasaki I., Shirai T. and Suzuki A., Note on the spectrum of discrete Schrödinger operators, J.Math-for-Industry. 4, 2012, p.105-108
Faria da Veiga P. A., Ioriatti L. and Carroll M. O’, Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians, Phys. Rev. E. 66(3), 016130, 2002.
Lakaev S. N., Bozorov I. N., The number of bound states of one particle Hamilonian on a three-dimensional lattice, Theoretical and Mathematical physics. 158(3), 2009, p.360-376.
Muminov Z. E., Alladustov S. U., Lakaev S. S., Threshold Analysis of the Three Dimensional Lattice Schrödinger Operator with Non-Local Potential, Lobachevskii J Math, 41, 2020 p.1094-1102.
Muminov Z. E., Alladustov S. U., Lakaev S. S., Spectral and threshold analysis of a small rank perturbation of the discrete Laplacian, J. Math. Anal. Apl. 496(2), 124827, 2021.
Yafaev D. R., Scattering theory: Some old and new problems, Lecture Notes in Mathematics, 1735. Springer-Verlag, Berlin. 2000, 169 pp.
Kurbonov O. I., Akhralov Kh. Z., On the negative eigenvalues of the discrete Laplacian with potential in three-dimensional case, ACTA NUUz, 2/1.1 pp 72-81, 2024.
Kurbonov O.I., About the negative eigenvalues of the discrete Schrodinger operator with non-local potential in d-dimensional case, Uzbek Mathematical Journal 2024, Volume 68, Issue 3, pp.113-122.
Alladustov Sh U., Kurbonov O. I., Akhralov Kh. Z., On the negative eigenvalues of the discrete Schrödinger Operator with non-local potential in threedimensional case, Lobachevskii Journal of Mathematics, Vol 43, No.11, pp. 3039-3047, 2022.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
License Terms of our Journal