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Abstract. We study essential spectrum of a matrix operator ℍ, that describes three particles 
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I. INTRODUCTION 

In statistical physics [1,2], in solid-state physics [3,4] and in the theory of 
quantum fields [5,6], studying the spectral properties of the operators associated with 
a system of three particles is one of the intensive research areas. Sigal et al [7] found 
the location of the spectrum for a system of several particles. They showed that 
continuous spectrum does not contain singular points by using some geometric 
techniques. They also found the regions where points of the discrete spectrum 
accumulate. 

The study of systems describing 𝑛 particles can be reduced to the study of self-
adjoint operators acting in the so-called cut subspace 𝐻(௡) of the Fock space, consisting 
of 𝑟 ≤ 𝑛 particles (see the references [1,4,5,6,7,8]). The model operators, associated to 
a system of two bosons and another particle of a different nature were studied by 
Albeverio 𝑒𝑡 𝑎𝑙 [9,10] in the subspaces of the bosonic Fock space. They explicitly 
described the essential spectrum and found its location. In this work, we study the 
essential spectrum of a similar model operator but in the fermionic Fock space. We find 
the exact location of the essential spectrum under certain conditions. We also show that 
the essential spectrum can be described by the spectrum of the operator ℎ(𝑝), 𝑝 ∈ 𝑇ଷ, 
called a Friedreich model. In the main theorem of the paper (Theorem 3), we obtain 
that the essential spectrum of the operator ℍ consists of a union of closed intervals, and 
the number of intervals does not exceed four. 

The paper is organized as follows. Section I is the introduction. In Section II, we 
describe the model operator, ℍ. In Section III, channel operators and Friedrichs models 
are defined, and their properties are given. The main results, including their proofs, are 
presented in Section IV. 

 
II. THE MODEL OPERATOR 

We use the following notations:  
𝕋ଷ = (−𝜋, 𝜋]ଷ – the three-dimensional torus. 
𝐿ଶ((𝕋ଷ)ଶ) – the Hilbert space of square-integrable functions in (𝕋ଷ)ଶ. 
𝐿௔௦

ଶ ((𝕋ଷ)ଶ) – the subspace of antisymmetric functions. 



“Innovations in Science and Technologies” илмий-электрон журнали                     
 ISSN: 3030-3451.  2 / 2025 йил. 
 www.innoist.uz 
  

 
 

817 Innovations in Science and Technologies, 3-сон. 2025 йил.                                                                                      

For simplicity, denote 
 ℋ଴ = ℂ,    ℋଵ = 𝐿ଶ(𝕋ଷ), ℋଶ = 𝐿௔௦

ଶ ((𝕋ଷ)ଶ). 
Let 𝐼௝ and ⟨⋅,⋅⟩௝, 𝑗 = 0,1,2 be an identity operator and an inner product in these 

spaces, respectively. Then, we denote their direct sum as 
 𝓗 = ℋ଴ ⊕ ℋଵ ⊕ ℋଶ. 
For any functions 𝑔 ∈ 𝐿ଶ(𝕋ଷ), we define the corresponding operators 𝒈: ℋଵ →

ℋ଴ and 𝒈∗: ℋ଴ → ℋଵ as  
 𝒈(𝑓) = ⟨𝑓, 𝑔⟩ଵ, 𝑓 ∈ ℋଵ 

and 
 𝒈∗(𝑐) = 𝑐(⋅)𝑔,  𝑐 ∈ ℋ଴, 

respectively. 
Let 𝐿௚, 𝐿௦௚: 𝐿ଶ((𝕋ଷ)ଶ) → 𝐿ଶ(𝕋ଷ) and 𝐿௚

∗ , 𝐿௦௚
∗ : 𝐿ଶ(𝕋ଷ) → 𝐿ଶ((𝕋ଷ)ଶ) be operators 

defined as  
𝐿௚ = 𝐼ଵ ⊗ 𝒈,       𝐿௦௚ = 𝒈 ⊗ 𝐼ଵ 

and  
𝐿௚

∗ = 𝐼ଵ ⊗ 𝒈∗,  𝐿௦௚
∗ = 𝒈∗ ⊗ 𝐼ଵ, 

respectively. 
Next, we define the model operator as a matrix operator in the Hilbert space 𝓗 

as  

 ℍ = ൭
𝐻଴଴ 𝐻଴ଵ 0
𝐻ଵ଴ 𝐻ଵଵ 𝐻ଵଶ

0 𝐻ଶଵ 𝐻ଶଶ

൱, 

where the operators 𝐻௜,௝ act as follows: 
𝐻଴଴: ℂ → ℂ,  𝐻଴଴(𝑐) = 𝑢଴𝑐 
𝐻଴ଵ: 𝐿ଶ(𝕋ଷ) → ℂ,  𝐻଴ଵ(𝑓) = 𝒂(𝑓) 
𝐻ଵ଴: ℂ → 𝐿ଶ(𝕋ଷ),  𝐻ଵ଴(𝑐) = 𝑐 ⋅ 𝑎 
𝐻ଵଵ: 𝐿ଶ(𝕋ଷ) → 𝐿ଶ(𝕋ଷ),  𝐻ଵଵ𝑓(𝑝) = 𝑢(𝑝)𝑓(𝑝) +

∫ 𝑤(𝑝, 𝑡)𝑓(𝑡)𝑑𝑡
𝕋య  

𝐻ଵଶ: 𝐿ଶ((𝕋ଷ)ଶ) → 𝐿ଶ(𝕋ଷ), 𝐻ଵଶ(𝜑) = 𝐿௕(𝜑) 

𝐻ଶଵ: 𝐿ଶ(𝕋ଷ) → 𝐿ଶ((𝕋ଷ)ଶ), 𝐻ଶଵ(𝑓) =
1

2
(𝐿௕

∗ − 𝐿௦௕
∗ )(𝑓) 

𝐻ଶଶ: 𝐿ଶ((𝕋ଷ)ଶ) → 𝐿ଶ((𝕋ଷ)ଶ), 
𝐻ଶଶ(𝜑)(𝑝, 𝑞) = 𝜑(𝑝, 𝑞)𝐸(𝑝, 𝑞 ) − (𝐿ఝ

∗ 𝐿ఝ − 𝐿௦ఝ
∗ 𝐿௦ఝ)(𝜑)(𝑝, 𝑞) 

Here 𝑢଴ is a fixed number, 𝑎, 𝑏, 𝑢, 𝜑 are real-valued continuous functions on 
the torus 𝕋ଷ, 𝐸(⋅,⋅) is a real-valued continuous symmetric function in (𝕋ଷ)ଶ, and  
𝑤(⋅,⋅) ∈ 𝐿ଶ((𝕋ଷ)ଶ) is a self-adjoint function, i.e., 𝑤(𝑝, 𝑞) = 𝑤(𝑞, 𝑝), 𝑝, 𝑞 ∈ 𝕋ଷ. We 
note that with these definitions, 𝐻଴ଵ and 𝐻ଵଶ are annihilation operators, which lowers 
the number of particles in a given state by one, while 𝐻ଵ଴ and 𝐻ଶଵ are creation 
operators, being adjoint to the annihilation operators, increase the number of particles 
by one (see Ref. [5] for more details).  

Defined in this way, ℍ is a bounded and self-adjoint operator in 𝓗. 
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III. CHANNEL OPERATORS AND A FRIEDRICHS MODEL 
Here, we define an operator 𝐻௖௛, which acts in ℋ෡ = 𝐿ଶ(𝕋ଷ) ⊕ 𝐿ଶ((𝕋ଷ)ଶ) as a 

matrix operator 

𝐻௖௛ = ቌ
𝐻ଵଵ  

ଵ

√ଶ
𝐿௕

ଵ

√ଶ
𝐿௕

∗ 𝐻ଶଶ
଴ − 𝐿ఝ

∗ 𝐿ఝ

ቍ. 

This operator is called a channel operator corresponding to ℍ (see, Ref. [11]). 
We can see that 𝐻௖௛ has a simpler structure than the model operator, ℍ. Therefore, 
description of the spectral properties of the channel operator is also much easier. There 
is a particular relation between the essential spectra of the channel operators and the 
model operator ℍ, which will be given later.  

Let 𝑈ఈ be a multiplication operator in 𝐿ଶ(𝕋ଷ), by the function 𝛼(⋅), i.e.,  

 𝑈ఈ ൬
𝑓ଵ(𝑝)

𝑓ଶ(𝑝, 𝑞)
൰ = ൬

𝛼(𝑝)𝑓ଵ(𝑝)

𝛼(𝑝)𝑓ଶ(𝑝, 𝑞)
൰ ,  𝛼 ∈ 𝐿ଶ(𝕋ଷ). 

We note that 𝐻௖௛ commutes with the abelian group of all operators 𝑈ఈ, i.e., for 
any 𝛼 ∈ 𝐿ଶ(𝕋ଷ), we have 

𝐻௖௛𝑈ఈ = 𝑈ఈ𝐻௖௛. 
The channel operator 𝐻௖௛ can be decomposed into a direct von Neumann integral 

(see e.g., [12, Theorem XIII.84])  
 𝐻௖௛ = ∫ ⊕ 𝐻(𝑝)𝑑𝑝

𝕋య .    (1) 
Here 𝐻(𝑝), 𝑝 ∈ 𝕋ଷ, the so called Friedrichs model, is defined as a bounded and 

self-adjoint operator acting in ℋ଴ ⊕ ℋଵ as 
 𝐻(𝑝) = 𝐻଴(𝑝) + 𝑉, 
where 

 𝐻଴(𝑝) = ൬
0 0
0 ℎ଴(𝑝)

൰ ,  𝑉 = ቌ
𝑢(𝑝)

ଵ

√ଶ
𝒃

ଵ

√ଶ
𝒃∗ −𝜑∗𝜑

ቍ, 

with ℎ଴(𝑝),  𝑝 ∈ 𝕋ଷ being a multiplication operator by the function 𝑒௣(⋅): =

𝐸(𝑝,⋅), 
 (ℎ଴(𝑝)𝑓)(𝑞) = 𝑒௣(𝑞)𝑓(𝑞),  𝑓 ∈ ℋଵ. 
For spectral properties of such types of Friedrichs models refer to Refs. [9,10]. 
From the decomposition (1) and the theorem on the spectrum of decomposable 

operators ([12, Theorem XIII.85]), we obtain the following theorem. 
Theorem 1. The spectrum of the channel operator 𝐻௖௛ is described as  
 𝜎(𝐻௖௛) =∪௣∈𝕋య ൛𝜎ௗ൫𝐻(𝑝)൯ൟ ∪ [𝐸௠௜௡, 𝐸௠௔௫] 
where 𝜎ௗ(𝐻(𝑝)) is the discrete spectrum of the operator 𝐻(𝑝), 𝑝 ∈ 𝕋ଷ and  

𝐸୫୧୬ = min
௣,௤∈𝕋య

𝐸(𝑝, 𝑞) , 𝐸୫ୟ୶ = max
௣,௤∈𝕋య

𝐸(𝑝, 𝑞) 

Next, we discuss spectral properties of the Friedrichs model 𝐻(𝑝), 𝑝 ∈ 𝕋ଷ. 
According to the definition of the Friedrichs model, 𝐻(𝑝) = 𝐻଴(𝑝) + 𝑉, the 
perturbation operator 𝑉 is an operator of finite rank. Therefore, from Weyl’s theorem 
on the stability of the spectra, 𝜎௘௦௦(𝐻(𝑝)), the essential spectrum of the operator 𝐻(𝑝), 
coincides with the spectrum of ℎ଴(𝑝), i.e.,  
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 𝜎௘௦௦(𝐻(𝑝)) = 𝜎൫ℎ଴(𝑝)൯ = [𝑚(𝑝), 𝑀(𝑝)],  𝑝 ∈ 𝕋ଷ, 
where 𝑚(𝑝) and 𝑀(𝑝) are the maximum and minimum values of the function 

𝑒௣(𝑞) in the torus 𝕋ଷ, i.e.,  
 𝑚(𝑝) = min

௤∈𝕋య
𝑒௣(𝑞) , 𝑀(𝑝) = max

௤∈𝕋య
𝑒௣(𝑞) 

Next, for any 𝑝 ∈ 𝕋ଷ, we define 𝛥(𝑝,⋅), the Fredholm determinant associated 
with the operator 𝐻(𝑝), as an analytic function in ℂ\[𝑚(𝑝), 𝑀(𝑝)] by  

𝛥(𝑝; 𝑧) = (𝐼଴ − 𝜑𝑟଴(𝑝, 𝑧)𝜑∗) ൬𝐻଴଴(𝑝) − 𝑧𝐼଴ −
1

2
𝒃𝑟଴(𝑝, 𝑧)𝒃∗൰ −

1

2
(𝒃𝑟଴(𝑝, 𝑧)𝜑∗)ଶ 

where 𝑟଴(𝑝; 𝑧), 𝑧 ∈ ℂ\[𝑚(𝑝), 𝑀(𝑝)], is the resolvent of ℎ଴(𝑝), 𝑝 ∈ 𝕋ଷ, 

𝑟଴(𝑝; 𝑧)(𝜑) = න
𝜑(𝑠)𝑑𝑠

𝐸(𝑝, 𝑠) − 𝑧𝕋య

 

Explicitly, 𝛥(𝑝; 𝑧) can be written as 

𝛥(𝑝; 𝑧) = ቀ1 − ∫
ఝమ(௦)ௗ௦

ா(௣,௦)ି௭𝕋య ቁ ቀ𝑢(𝑝) − 𝑧 −
ଵ

ଶ
∫

௕మ(௦)ௗ௦

ா(௣,௦)ି௭𝕋య ቁ −
ଵ

ଶ
ቀ∫

௕(௦)ఝ(௦)ௗ௦

ா(௣,௦)ି௭𝕋య ቁ
ଶ

. 

Lemma 1. For any 𝑝 ∈ 𝕋ଷ, the number 𝑧 ∈ ℂ\[𝑚(𝑝), 𝑀(𝑝)] is an eigenvalue 
of 𝐻(𝑝) if and only if 𝛥(𝑝, 𝑧) = 0.  

Proof. According to the definition of the operator 𝐻(𝑝), the eigenvalue equation, 
 𝐻(𝑝)𝑓 = 𝑧𝑓,  𝑓 ∈ ℋ(ଶ), (2) 
is equivalent to the system of equations,  

ቐ
(𝑢(𝑝) − 𝑧)𝑓଴ +

ଵ

√ଶ
𝒃𝑓ଵ = 0

−
ଵ

√ଶ
𝑟଴(𝑝; 𝑧)𝒃∗𝑓଴ + 𝑟଴(𝑝; 𝑧)𝜑∗𝜑𝑓ଵ = 𝑓ଵ

,  𝑓 = (𝑓଴, 𝑓ଵ) ∈ ℋ(ଶ). 

In other words, we have 

ቐ
(𝐻଴଴(𝑝) − 𝑧𝐼଴ −

ଵ

ଶ
𝒃𝑟଴(𝑝, 𝑧)𝒃∗)𝑓଴ +

ଵ

√ଶ
𝒃𝑟଴(𝑝, 𝑧)𝜑∗𝛼 = 0

−
ଵ

√ଶ
𝜑𝑟଴(𝑝, 𝑧)𝒃∗𝑓଴ +(𝐼଴ − 𝜑𝑟଴(𝑝, 𝑧)𝜑∗)𝛼 = 0

,        (3) 

where 𝑓଴, 𝛼 ∈ ℂ.  
Solutions of the last system of linear equations and the equation (2) are related 

as  
 𝑓଴ = 𝑓଴, 𝛼 = 𝜑𝑓ଵ 
and  

 𝑓ଵ(𝑞) = 𝑟଴(𝑝; 𝑧) ቀ−
ଵ

ଶ
𝑏(𝑞)𝑓଴ + 𝜑(𝑞)𝛼ቁ. 

On the other hand, determinant of the system of equation (3) is equal to 𝛥(𝑝; 𝑧), 
therefore the equation 𝐻(𝑝)𝑓 = 𝑧𝑓, 𝑓 ∈ ℋ଴ ⊕ ℋଵ has a nontrivial solution if and only 
if 𝛥(𝑝; 𝑧) = 0. This completes the proof of the lemma.  

Denote the number of eigenvalues of ℍ lying below 𝑧 ൫𝑧 ≤ 𝑖𝑛𝑓 𝜎ess(𝐴)൯, by 
𝑛ି(𝐴, 𝑧) and the number of eigenvalues lying above 𝑧 ൫𝑧 ≥ 𝑠𝑢𝑝 𝜎ess(𝐴)൯ by 𝑛ା(𝐴, 𝑧), 
counted with multiplicities. 

Lemma 2. For a fixed 𝑝 ∈ 𝕋ଷ, we have: 
𝑛ି൫𝐻(𝑝), 𝑚(𝑝)൯ ≤ 1 if 𝜑(⋅) and 𝑏(⋅) are bounded operators 
𝑛ି൫𝐻(𝑝), 𝑚(𝑝)൯ ≤ 2, if they are unbounded. 
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Moreover, we have 
𝑛ା൫𝐻(𝑝), 𝑀(𝑝)൯ ≤ 1. 

Proof. We can easily obtain that  

𝑧ଵ,ଶ = −
𝑢(𝑝) ± ඥ𝑢ଶ(𝑝) + 4||𝑏||ଶ

2
,   𝑧ଵ < 0 < 𝑧ଶ 

are simple eigenvalues of the matrix operator 

𝑉ᇱ = ቌ
𝑢(𝑝)

ଵ

√ଶ
𝒃

ଵ

√ଶ
𝒃∗ 0

ቍ. 

From the definition of the operator 𝑉, Img(𝑉) = ℂ ⊕ ⟨𝑏, 𝜑⟩, where ⟨𝑏, 𝜑⟩ is the 
subspace spanned by 𝑏 and 𝜑. Therefore, according to the facts that −𝜑∗𝜑 ≤ 0 and 
𝜎௘௦௦(𝑉ᇱ) = {0}, the following statements hold true for the operator 𝑉:   

i) If the functions 𝜑(⋅) and 𝑏(⋅) are linearly bound, then 𝑉 has two positive 
eigenvalues (with multiplicities) and one (simple) negative eigenvalue.  

ii) If the functions 𝜑(⋅) and 𝑏(⋅) are linearly unbounded, then 𝑉 has only one 
(simple) positive and one (simple) negative eigenvalues.  

Also, from the relations 𝐻(𝑝) ≥ 𝑚(𝑝) + 𝑉 and 𝐻(𝑝) ≤ 𝑀(𝑝) + 𝑉, and the 
minimax principle, for 𝑛ି൫𝐻(𝑝), 𝑚(𝑝)൯ and 𝑛ା൫𝐻(𝑝), 𝑀(𝑝)൯, we have  

𝑛ି൫𝐻(𝑝), 𝑚(𝑝)൯ ≤ 𝑛ି൫𝑚(𝑝) + 𝑉, 𝑚(𝑝)൯, 
𝑛ା(𝐻(𝑝), 𝑀(𝑝)) ≤ 𝑛ା൫𝑀(𝑝) + 𝑉, 𝑀(𝑝)൯, 

respectively. Then, the assertions i) and ii), as well as the relations  
𝑛ି൫𝑚(𝑝) + 𝑉, 𝑚(𝑝)൯ = 𝑛ି(𝑉, 0) 

and  
𝑛ା൫𝑀(𝑝) + 𝑉, 𝑀(𝑝)൯ = 𝑛ା(𝑉, 0) 

yields the proof. The following can be derived from this lemma.  
Corollary 1. The Fredholm operator Δ(𝑝,⋅), 𝑝 ∈ 𝕋ଷ, may have no more than one 

zero (two zeros) in the interval ൫−∞, 𝑚(𝑝)൯, if φ(⋅) and b(⋅) are linearly bounded 
(resp. unbounded). Furthermore, it may have only one zero in the interval (𝑀(𝑝), ∞).  

Let 𝛴 = 𝜎(𝐻௖௛) be the spectrum of the channel operator 𝐻௖௛, then we have  
𝛴 = [𝐸௠௜௡, 𝐸௠௔௫] ∪ 𝜎2 

where 𝜎2 =∪௣∈𝕋య 𝜎ௗ൫𝐻(𝑝)൯, i.e.,  
 𝜎2 = {𝑧 ∈ ℝ\[𝑚(𝑝), 𝑀(𝑝)]: 𝛥(𝑝; 𝑧) = 0 for some  𝑝 ∈ 𝕋ଷ}. 
Theorem 2. The essential spectrum, 𝜎௘௦௦(ℍ), of the model operator ℍ coincides 

with the set Σ, i.e.,  
 𝜎௘௦௦(ℍ) = Σ. 
Proof. The proof can be found in Ref. [9].  

 
IV. FORMULATION AND PROOF OF THE MAIN RESULTS 

Here we present main results of the paper, which describes 𝜎௘௦௦(ℍ), the essential 
spectrum of the model operator ℍ.    

Theorem 3. 𝜎௘௦௦(ℍ) consists of a union of no more than four closed intervals.  
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Proof. Let 𝜎 ⊂ 𝜎(ℍ) be the largest closed interval containing [𝐸௠௜௡, 𝐸௠௔௫], 
which may coincide with 𝜎 = [𝐸௠௜௡, 𝐸௠௔௫]. Set  

 𝜎଴: =∪௣∈𝕋య ൛𝜎ௗ൫𝐻(𝑝)൯ൟ\𝜎.      (4) 
If 𝜎଴ is an empty set, then the essential spectrum, 𝜎௘௦௦(ℍ), consists of only one 

closed interval 𝜎. 
If 𝜎଴ is not an empty set, then 𝜎଴ ∩ 𝜎 = ∅ and from the definition of a spectrum 

the set 𝜎଴ is closed. 
According to the definition (4), for any 𝑝 ∈ 𝕋ଷ, the operator 𝐻(𝑝) has an 

eigenvalue in 𝜎଴. 
Next, let the inclusion [𝑎, 𝑏] ⊂ 𝜎଴ hold, where 𝑎, 𝑏 lie in the boundary of 𝜎(ℍ). 

Let 𝐺ఠ be a set of points 𝑝 ∈ 𝕋ଷ, such that 𝐻(𝑝) has an eigenvalue in [𝑎, 𝑏]. We show 
that 𝐺ఠ = 𝕋ଷ. Let 𝑝଴ ∈ 𝐺ఠ. Then, due to Theorem 2 and Lemma 1, there exists a 
number 𝑧଴ ∈ [𝑎, 𝑏], such that 𝛥(𝑝଴, 𝑧଴) = 0. 

However, for any 𝑝 ∈ 𝕋ଷ, the function 𝛥(𝑝,⋅) is analytic in some region 
containing the interval[𝑎, 𝑏]. Therefore, 

𝜕ଵ

𝜕𝑧ଵ
𝛥(𝑝଴, 𝑧଴) ≠ 0 

or otherwise  
𝜕ଶ

𝜕𝑧ଶ
𝛥(𝑝଴, 𝑧଴) ≠ 0. 

According to the implicit function theorem there exist neighborhoods 𝑈(𝑝଴) ⊂
𝕋ଷ and 𝑈ᇱ(𝑧଴) ⊂ [𝑎, 𝑏] of the points 𝑝଴ and 𝑧଴, respectively, and a continuous function  

𝑧: 𝑈(𝑝଴) → 𝑈ᇱ(𝑧଴) 
such that 𝛥൫𝑝, 𝑧(𝑝)൯ ≡ 0 for all 𝑝 ∈ 𝑈(𝑝଴). 
By Lemma 1, the number 𝑧(𝑝) ∈ [𝑎, 𝑏] is an eigenvalue of the operator 𝐻(𝑝) 

for any 𝑝 ∈ 𝑈(𝑝଴) ⊂ 𝐺ఠ, which yields that 𝐺ఠ is an open set. 
Next, we prove the closedness of the set 𝐺ఠ. Indeed, let a sequence {𝑝௡} ⊂ 𝐺ఠ 

converge to 𝑝଴ ∈ 𝕋ଷ and let {𝑧(𝑝௡)} ⊂ [𝑎, 𝑏] be an eigenvalue of the operator 𝐻(𝑝௡). 
Without loss of a generality we may assume that  

lim
௡→ஶ

𝑧(𝑝௡) = 𝑧଴ ∈ [𝑎, 𝑏]. 

As 𝛥(⋅,⋅) is a continuous function in 𝕋ଷ × [𝑎, 𝑏], we have  
0 ≡ lim

௡→ஶ
Δ൫𝑝௡, 𝑧(𝑝௡)൯ = Δ(𝑝଴, 𝑧଴)  

and therefore 𝑝଴ ∈ 𝐺ఠ since [𝑎, 𝑏] is closed. Hence, the set 𝐺ఠ is closed. So, we 
showed that the set 𝐺ఠ is both open and closed, and therefore we conclude 𝐺ఠ = 𝕋ଷ. 

According to Corollary 1, the 𝑑൫𝐻(𝑝)൯, 𝑝 ∈ 𝕋ଷ contains no more than three 
eigenvalues, therefore the number of closed intervals [𝑎, 𝑏] ⊂ 𝜎଴ does not exceed three. 

From the relation, 
𝜎௘௦௦(𝐻) = 𝜎଴ ∪ [𝐸௠௜௡, 𝐸௠௔௫], 

we conclude that the essential spectrum 𝜎௘௦௦(ℍ) consists of a union of no more 
than four segments. 
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