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Abstract.  This article considers a boundary value problem for a third-order equation of the “pseudo-
elliptic” type. Special energy estimates are established for the generalized solution of the equation. 
With the help of which you can build a solution to the boundary value problem in unlimited areas, in 
classes of functions growing at infinity, depending on the geometric characteristics of the boundaries 
of the area. 
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I. INTRODUCTION 

This article explores the equations 
0 1 ( , , )L lu L u Mu f x y t        (1) 

in an unrestricted area  0, ,Q G T G D    . Where n
xD R   bounded domain, 

 1: 0 m
yy y R      unbounded domain, with smooth borders 1  and   respectively,  
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p q p

pq p
y y yMu c x y t u c x y t u c x y t u   . 

Equation (1) was studied in the works [1] and [2]. In [1], a technique was 
developed for constructing regular solutions to boundary value problems for equation 
(1) in bounded domains, and the behavior of the solution was studied for t  .  

Further, in the work [2], energy estimates of the type of the Saint-Venant’s 
principle were established for generalized solutions of boundary value problems of 
equation (1). These estimates make it possible to determine the class of uniqueness of 
solutions to boundary value problems, in classes of functions growing at infinity 
depending on the geometric properties of the domain, and also allows us to study the 
properties of solutions to equation (1) in the neighborhood of irregular boundary points 
and infinitely distant points of the boundary of the domain. 

 
II. LITERATURE ANALYSIS 

It is known that in the study of properties and the construction of solutions to the 
problem of elasticity theory in unbounded domains, a special place is occupied by 
energy estimates of the type of the Saint-Venant’s principle (see [3-7]). The study of 
this issue, both for the flat theory of elasticity and for the system of elasticity theory, 
was devoted to a series of works by O.A.Oleinik and her students, who managed to 
obtain accurate estimates that take into account the geometric characteristics of the 
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area. In addition, they obtained uniqueness theorems and an existence theorem for 
solutions to boundary value problems in classes of functions growing at infinity 
depending on geometric characteristics. Based on these estimates, the behavior of the 
solution of the elasticity theory equations in the vicinity of irregular and infinitely 
distant points of the boundary was studied (see [8-11]). In these works, methods were 
developed for studying the behavior of solutions of elliptic and parabolic equations. 

At present, due to the emergence of non-classical problems devoted to the study 
of large waves described by an odd-order equation, interest in studying the odd-order 
equation has received a new impetus [12-18]. Therefore, the construction of a solution 
to boundary value problems for odd-order equations, both in bounded and unbounded 
domains, is of particular interest. The study of the properties of these solutions in the 
neighborhood of irregular and infinitely distant points of the boundary occupies a 
separate place in the study of odd equations. The solution to these problems is the 
establishment of energy estimates of a special type. Therefore, the establishment of an 
analogue of the Saint-Venant’s principle for solutions of an equation of an odd order 
and their application to the study of solving boundary value problems is one of the 
targeted scientific types of research in the field of mathematics. 

The purpose of this work is to establish energy estimates of a special form, which 
allows constructing a solution to boundary value problems for equation (1) in 
unbounded domains, in classes of functions growing at infinity, depending on the 
geometric characteristics of the boundaries of the domain. 
 

III. RESULTS 
STATEMENT OF THE PROBLEM 

Equation (1) will be considered with the following boundary conditions 

2

0, 0
k

k
xQ

u u




  .     (2) 

Where     2 , , 0, : 0k
kx y t G T v     , kv   internal normal vector to Q  in the point 

 , ,x y t .  

Let us assume that the coefficients of operators 0L  and M  satisfy the conditions 

 2 2 1
0 1, , , , ,ij ji ij n m

i ja a a x y t Q Q               , 

 2 2 1
0 1, , , , ,pq qp pq n m

p qc c c x y t Q Q               . 

We will assume that in some neighborhood of any of its points the hyperspace G  
represent in the form 
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1 1 2 1 1

, ,..., , ,..., ,
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, 

where   and 1  is a twice continuously differentiable function. 
We make a division of the border of the region Q  in the following way: 

    1 , , 0, : 0k
kx y t G T v     , 

    1 , , 0, : 0k
kx y t G T v     , 

    2 , , 0, : 0k
kx y t G T v     . 
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Let    { } 0,Q G T     a family of finite sub regions of a region ,Q  parameter 

dependent 0 0{ : 0 },          . We assume that Q Q    if    . We denote 
(0, ) \S s T Q Q       . We assume that s  connected ( 1)n m    dimensional surface 

having the same smoothness as G , and its border s G   .  
We assume for ˆ ˆ, 0    in some neighborhood ˆS  we can enter local 

coordinates ( )j jz x . This function ( )j x  is continuously differentiable.  

We put ,G G      

  0, 0, : 0k
kx T v      , 

  1, 0, : 0 ,k
kx T v       

  2, 0, : 0k
kx T v      . 

For some 0h   define   2, , 2, 2,, , : (( , , ), )h x y t x y t h         , 2, 2, 2, ,\h
h     . 

Let ( )E Q  there are many functions 2 ( )C Q   such that 0   on the (0, )G T  , 
and for some number 0h   will be 0

k

k
x    on the 0, 1, 2, .h

       

Let ( )H Q  is the Hilbert space obtained by completion ( )E Q  according to the 
norm 

 
2,

1

2
2 2

1( ) i j p q i j

ij k ij
x x y y t k x xH Q

Q

u d u u u u u u dx v a u u ds


 


       
  
  . 

Where  

1
0

1 1 1
,

2 2 2j k

ij j ij ij j i ij ij ij ij k ij ij ij
x t x td a a a d a d b a a a   


          , 

 2 2 1
0 1, , , , ,ij ji ij n m

i jd d d x y t Q Q              , 

 2 2 1
1 1 0 1 1, , , , ,ij ji ij n m

p qd d d x y t Q Q              . 

Consider the bilinear form 

  ( , )
i j k i j j i j i j

k ij ij k ij i k ij
x x x x x t x x x x x

Q

a u a u a u a a u d u dxdydt


              

      j i i i p q q p

i ij ij i i pq p pq
x x x x t y y y y

Q

d d u a a u c u c c u dxdydt


             

    p p q i i j

p pq i ij
t t t y y y x x x

Q

u a u c c c d d d u dxdydt


           . 

where 
k

i i i i k i i
x td b a a a a       . 

Definition. Function  , ,u x y t  will be called a generalized solution of problem 

(1), (2) in the domain Q , if for any finite sub-domain Q  domain Q  we have 

   u x H Q  and the relation 

 , ( , , )
Q

a u f x y t dxdydt


       (3) 

For an arbitrary function    , ,x y t E Q   satisfying the condition 0   on the S . 

Let  1: ,S x x const         for some 00    . 
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We enter the designation 2 2( )
i j p q

ij pq
x x y y tE u d u u c u u u u    , 

  1( , , ) max 2 ,0 , ( ) sup ( , , )
p

p pq
y
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B x y t c c P B x y t


   , 
1

2( ) sup pq
p q

S
g c v v



  , 

1

20 ( ) inf ( )
N

S S

E ds ds
 


   





     
  
  ,     (4) 

where N many functions ( )x  continuously differentiable in a neighborhood S , at
( , , )x y t Q , which are equal to zero on S  . 

We assume that there exists such a positive, absolutely continuous function ( )

,   ,  such that it will be determined by the inequalities 
1

12( ) ( ) ( ) ( ) ( )g P      
    .     (5) 

Function ( )   is a solution of the problem 

( ), (0) 0
d

d

  

   .     (6) 

Theorem 1. (An analogue of Saint-Venant's principle) Let 1 0;
i

ij i
xa a a      

0

1 1 1 1
0

2 2 2 2i j i p q p

ij i pq p
x x x y y yd d d c c c        . If function ( , , )u x y t  is a generalized solution of 

equation (1) satisfying the boundary condition (2) in the domain Q , and ( , , ) 0f x y t   in 
the 0Q


. Then for any 00 R R   there is an estimate 
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E u dxdydt R R E u dxdydt
 

     in the 0Q


.  (4) 

Proof. Let 0 0R  . Then 0( ) 0R  . For ̂   such that 0 ˆ( ) ( ),R R     

( )( , , ) Rx y t Q , construct a cutting function ˆ( , )y  , parameter dependent  , where 

ˆ0 2 min ll
   . To this end, consider the function 

  1,g d
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where      an infinitely differentiable function such that   0    at 1  ,   0    

at 1  ,   1    and   1d  
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We put  ˆ, 1y   , if 0y Q . Every point ( ) 0\Ry Q Q  matches a single value

( )y   such that y S . 

We put    ˆ ˆ, , ( )y g y      for ( ) 0\Ry Q Q . Here it is obvious that 
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By virtue of the assumptions, the function ˆ( , )y   is a continuously differentiable 
function with respect to the variables y  and parameter ̂ . 

Let ( , , )mu x y t  sequence of functions form ( )E Q  such that ( , , ) ( , , )mu x y t u x y t  at 
m  in ( )H Q .  

We set in identity (3) ˆ ˆ, ( , , ) ( , )mQ Q u x y t y      . Further, integrating by parts, 
we have 

 
ˆ ˆ ˆ

2
, ,

1
ˆ ˆ( ) ( ) ( )

2p q

pq p pq
m m my m q y m p

Q S S

E u dxdydt E c u u v ds c c u v ds
  

          . (6) 

Now, using the Cauchy-Bunyakovsky inequality, from (6) we obtain 

ˆ ˆ

, ,ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )m m
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E u dxdydt E E u dxdydt
 

         .     (7) 
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F E u dxdydt
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  , then from inequality (7) 

we obtain that 

     
, ,
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 .                    (8) 

Here believing 0ˆ ( ), R R      , we get 

, ,

( ( ))
( ( )) ( ( )) ( ( ))m m

dF
F E

d 
       


   . 

Now multiplying this inequality by e   and integrating it over  we have 

   0

0

0 0 , ,( ( )) exp ( ( )) ( ( )) ( ( ))
R

R
m m

R

F R R R F R e E e d
             .  (9) 

Here the second term on the right side of inequality (9) is arbitrarily small if m  big 
enough and ( )m   a little enough.  

In inequalities (9), passing to the limit m  и   0m  ,  we obtain estimate 

(4). 
Applying inequalities (4), one can obtain a uniqueness theorem and an existence 

theorem, a solution to boundary value problems for equations (1) in the classes of 
functions of domains growing at infinity, depending on the behavior of the coefficients 
of the equation and depending on the geometric characteristics of the domain. 

Here, as an application of inequality (4), we present the uniqueness theorem for 
the solution. 

Theorem 2. Let ( , , )u x y t  is a generalized solution of problem (1), (2) in an 
unbounded domain Q , and ( , , ) 0f x y t   in Q . Let a family of finite sub-domains be 
defined Q  domain Q , and Q Q


  , { : 0 }, ( )           at ,   

( ), (0) 0
d

d

  

   . Then if for some sequence of real numbers  jR  such that jR   

at j  , the inequalities 

 
( )

( ) ( ) exp , 1, 2,3, 4,...
R j

j j

Q

E u dxdydt R R j


     (10) 

where ( ) 0jR   at j  , then 0u   in Q . 
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Proof. We fix an arbitrary number kR  from sequence jR . Then from (4) follows 

 
( ) ( )

( ) exp ( ) ( )
R Rk r s

k s k

Q Q

E u dxdydt R R E u dxdydt
  

    . 

Therefore, by virtue of condition (10), we have that 
 

( )

( ) ( ) exp
Rk

k s k

Q

E u dxdydt R R


  . 

From here at s , we get 0u   in ( )kRQ . Then k  chosen arbitrarily then 0u   in Q . 
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