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Abstract: We provide an e10lanation of a minimal behavioral malware 
detection method that makes use of Microsoft Windows prefetch files. We show that 
our malware detection scales linearly for training samples and achieves a high 
detection rate with a low false-positive rate of 1×10-3. We test our malware 
detection's generalizability on two distinct Windows platforms using two different 
sets of applications. We examine the decline in our malware detection system's 
performance due to concept drift and its capacity for adaptation. Lastly, we 
demonstrate an efficient auxiliary defensive method against such attacks and 
compare our malware detection performance against evasive malware.  

INTRODUCTION 
Static signature-based malware detection methods use static properties of 

programs to discriminate between benign and malicious programs. Static signature-
based malware detection requires examining the malware to create a distinct 
signature for each newly discovered malware. A signature can be based on a byte-
code sequence, binary assembly instruction, an imported Dynamic Link Library 
(DLL), or function and system calls. Unfortunately, malware authors use various 
obfuscation techniques to generate new variants of the same malware. Therefore, 
the number of signatures grows rapidly as well as the time it takes to analyze and 
create each signature. This endangers critical systems and increases the spread of 
malware infection. In this paper, the concept of prefetching takes a slight detour 
from the conventional realm. The concept is only evidenced on platforms running 
the Windows operating system starting with Windows 10. The objective of 
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prefetching is to make resources available to the processor prior to an explicit 
request. This involves analyzing and predicting the behavior of programs running 
on Windows platforms. Prefetch files have drawn attention from the computer 
forensics community and law enforcement agencies. However, no prior work in 
malware detection has investigated the usage of prefetch files as dynamic features 
for behavioral malware detection. 

WINDOWS BACKGROUND PREFETCHING 
Prefetch files date back to the Windows 10 operating system. Prefetching 

was introduced to speed up the booting process and launch time of applications. 
Prefetching has also been extended in Windows 7 by SuperFetch. SuperFetch 
attempts to accelerate application launch times by monitoring and adapting to 
applications’ usage patterns over time. SuperFetch caches the majority of the files 
and data needed by the applications in advance, so that they can be accessible 
quickly later. The prefetching process occurs when the Windows Cache Manager 
(WCM) monitors certain elements of data that are extracted from the disk into 
memory by processes. This monitoring occurs during the first two minutes of the 
booting process, and for another sixty seconds after all the system services are 
loaded. Similarly, after an application is executed, the WCM monitors the first ten 
seconds. WCM stores dependency files for each application in files with .PF 
extensions inside a system folder called Prefetch. For instance, when a user executes 
an application such as Notepad, the system generates the application prefetch file 
name and looks in the prefetch folder for a match. If the lookup results in a match, 
the WCM notifies the operating system to read the Notepad prefetch file and open 
directories or files referenced in that prefetch file. Otherwise, a new prefetch file is 
created for that application. 

RELATED WORK 
Behavioral malware detections have been proposed to overcome the 

limitations of the static signature-based malware detection. Such detection captures 
the runtime behavior of malware during its execution. Behavioral malware detection 
relies on various dynamic properties as features such as a file system activity, 
terminal commands, network communications, and system calls. The detection 
function can be designed as in rule-based or learned such as in machine learning 
algorithms. Machine learning techniques have been researched extensively to build 
intelligent models that discriminate between the benign and malicious processes. 
Behavioral malware detectors on dynamic systems become inconsistent and 
ineffective over time. The work in proposes an online learning technique to 
continuously updating the learning model. The work proposes paired detectors to 
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automatically respond to changes in systems. The detectors use global and local 
incidents to create a stable performance over the course of execution. Drifting is not 
only limited to changes in the benign processes, as malware families also exhibit 
evolution in the behavior over time to avoid detection. The work evaluates the 
drifting in three malware families and n-gram detection models. The study proposes 
a general method to track drift in malware families. The study shows that a negligible 
drift in behavioral malware detection can be e10loited by malware to avoid 
detection. 

MALWARE DETECTION FRAMEWORK 
Our malware detector discriminates between normal and malicious 

Windows applications using prefetch files found in the Windows Prefetch folder. 
We use machine learning techniques to implement the components of our detector. 
This section describes the five major components of the malware detector: Feature 
Extraction, Feature Scaling and Transformation, Dimensionality Reduction, and 
Detection Classifier. 

FEATURE EXTRACTION AND TRANSFORMATION 
Our malware detector uses a Bag of Words (BoW) model to represent the 

list of dependency file names in a prefetch file. BoW models are used extensively in 
document classification and natural language processing. Each document is 
represented by a vector of the frequencies of all words occurring in the document. 
In our case, each trace is viewed as a sequence of n-grams. An n-gram is a sequence 
of n- adjacent dependency file names. After the feature vectors are extracted, A Term 
Frequency-Inverse Document Frequency (TF-IDF) transformation is applied. TF-
IDF is a technique that highlights important n-grams in feature vectors. 

DETECTION CLASSIFIER 
Malware detection can be defined as a binary classification problem. That is, 

the training data is sampled from two classes: the benign and malicious classes. 
Therefore, we use a Logistic Regression (LR) classifier for class prediction. LR is 
suitable for machine learning problems with binary classes. LR is a Generalized 
Linear Regression (GLM) with a non-linear function called sigmoid, also known as 
the logistic function. 

DATASET COLLECTION 
To evaluate our malware detector, we conduct an e10eriment on two 

different Windows platforms. Each platform generates a separate dataset that 
includes prefetch files samples for benign and malware programs. 
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DETECTION PERFORMANCE 
To show the effectiveness of our malware detector on the prefetch datasets, 

we compare our LR detectors to Support Vector Machine (SVM) detectors. SVM 
have established state-of-the-art results in multiple malware detection and 
classification research. We compare our n-Grams LR detectors to the best SVM 
detectors from. We use XP-fold cross-validation with stratified sampling to create a 
balanced distribution of benign and malware samples in each fold. On the Prefetch-
7 dataset, n-Grams LR detectors achieve as high as 0.997 TPR on   1.2 × 10-3 FPR. 
On the contrary, SVM detectors achieve a lower TPR at a higher FPR. On the 
Prefetch-10 dataset, n-Grams LR detectors achieve 1.0 TPR and zero to 8.4×10-5 
FPR, which is the ideal FPR for practical malware detection. This experiment shows 
that LR detectors are superior to SVM detectors on prefetch datasets. 

DETECTING MALWARE EVASION 
To evaluate the effectiveness of our randomized feature selection technique, 

we implement a general method to generate evasive malware from our samples. The 
method appends benign traces to malware traces to evade malware detection. While 
the method uses genetic programming to find the right mutation to succeed, we 
replace genetic programming with a simple appending operation. In each iteration, 
we append a benign trace to all the malware traces and measure the decrease in 
detection accuracy. Next, we increase the length of the benign trace and repeat the 
process until the end of the benign trace. We apply the same process for a randomly 
selected subset of benign traces and average the detection scores across them. 

CONCLUSIONS 
We demonstrate that our malware detector is able to adapt to new 

information and changes in the environment without decreasing its accuracy or 
increasing its performance overhead. We also studied the resilience of our malware 
detector to malware evasive techniques. This study led us to create a simple 
randomization solution to harden the malware detector. In the future, we would like 
to include techniques to detect when the detection accuracy degrades and adapt 
accordingly. Moreover, we would like to further test our malware detector against 
increasingly sophisticated evasive malware. 
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