

77 “Innovations in Science and Technologies” ilmiy-elektron jurnali

LOW-LEVEL BEHAVIORAL MALWARE IDENTIFICATION FOR
WINDOWS OPERATING SYSTEMS

Berdiyev Alisher (PhD)
Shoraimov Khusanboy Uktamboyevich

 Teacher of the Department, “Systematic and Practical Programming”,
Tashkent University of Information Technologies named after Muhammad Al-
Khwarizmi, UZBEKISTAN

Xalikova Madina Shukhratovna
(Tashkent, Uzbekistan) Tashkent University of Information Technologies

named after Muhammad Al-Khorazmi
Faculty: Radio and mobile communication, 3-rd year of bachelor

Abstract: We provide an e10lanation of a minimal behavioral malware
detection method that makes use of Microsoft Windows prefetch files. We show that
our malware detection scales linearly for training samples and achieves a high
detection rate with a low false-positive rate of 1×10-3. We test our malware
detection's generalizability on two distinct Windows platforms using two different
sets of applications. We examine the decline in our malware detection system's
performance due to concept drift and its capacity for adaptation. Lastly, we
demonstrate an efficient auxiliary defensive method against such attacks and
compare our malware detection performance against evasive malware.

INTRODUCTION
Static signature-based malware detection methods use static properties of

programs to discriminate between benign and malicious programs. Static signature-
based malware detection requires examining the malware to create a distinct
signature for each newly discovered malware. A signature can be based on a byte-
code sequence, binary assembly instruction, an imported Dynamic Link Library
(DLL), or function and system calls. Unfortunately, malware authors use various
obfuscation techniques to generate new variants of the same malware. Therefore,
the number of signatures grows rapidly as well as the time it takes to analyze and
create each signature. This endangers critical systems and increases the spread of
malware infection. In this paper, the concept of prefetching takes a slight detour
from the conventional realm. The concept is only evidenced on platforms running
the Windows operating system starting with Windows 10. The objective of

78 “Innovations in Science and Technologies” ilmiy-elektron jurnali

prefetching is to make resources available to the processor prior to an explicit
request. This involves analyzing and predicting the behavior of programs running
on Windows platforms. Prefetch files have drawn attention from the computer
forensics community and law enforcement agencies. However, no prior work in
malware detection has investigated the usage of prefetch files as dynamic features
for behavioral malware detection.

WINDOWS BACKGROUND PREFETCHING
Prefetch files date back to the Windows 10 operating system. Prefetching

was introduced to speed up the booting process and launch time of applications.
Prefetching has also been extended in Windows 7 by SuperFetch. SuperFetch
attempts to accelerate application launch times by monitoring and adapting to
applications’ usage patterns over time. SuperFetch caches the majority of the files
and data needed by the applications in advance, so that they can be accessible
quickly later. The prefetching process occurs when the Windows Cache Manager
(WCM) monitors certain elements of data that are extracted from the disk into
memory by processes. This monitoring occurs during the first two minutes of the
booting process, and for another sixty seconds after all the system services are
loaded. Similarly, after an application is executed, the WCM monitors the first ten
seconds. WCM stores dependency files for each application in files with .PF
extensions inside a system folder called Prefetch. For instance, when a user executes
an application such as Notepad, the system generates the application prefetch file
name and looks in the prefetch folder for a match. If the lookup results in a match,
the WCM notifies the operating system to read the Notepad prefetch file and open
directories or files referenced in that prefetch file. Otherwise, a new prefetch file is
created for that application.

RELATED WORK
Behavioral malware detections have been proposed to overcome the

limitations of the static signature-based malware detection. Such detection captures
the runtime behavior of malware during its execution. Behavioral malware detection
relies on various dynamic properties as features such as a file system activity,
terminal commands, network communications, and system calls. The detection
function can be designed as in rule-based or learned such as in machine learning
algorithms. Machine learning techniques have been researched extensively to build
intelligent models that discriminate between the benign and malicious processes.
Behavioral malware detectors on dynamic systems become inconsistent and
ineffective over time. The work in proposes an online learning technique to
continuously updating the learning model. The work proposes paired detectors to

79 “Innovations in Science and Technologies” ilmiy-elektron jurnali

automatically respond to changes in systems. The detectors use global and local
incidents to create a stable performance over the course of execution. Drifting is not
only limited to changes in the benign processes, as malware families also exhibit
evolution in the behavior over time to avoid detection. The work evaluates the
drifting in three malware families and n-gram detection models. The study proposes
a general method to track drift in malware families. The study shows that a negligible
drift in behavioral malware detection can be e10loited by malware to avoid
detection.

MALWARE DETECTION FRAMEWORK
Our malware detector discriminates between normal and malicious

Windows applications using prefetch files found in the Windows Prefetch folder.
We use machine learning techniques to implement the components of our detector.
This section describes the five major components of the malware detector: Feature
Extraction, Feature Scaling and Transformation, Dimensionality Reduction, and
Detection Classifier.

FEATURE EXTRACTION AND TRANSFORMATION
Our malware detector uses a Bag of Words (BoW) model to represent the

list of dependency file names in a prefetch file. BoW models are used extensively in
document classification and natural language processing. Each document is
represented by a vector of the frequencies of all words occurring in the document.
In our case, each trace is viewed as a sequence of n-grams. An n-gram is a sequence
of n- adjacent dependency file names. After the feature vectors are extracted, A Term
Frequency-Inverse Document Frequency (TF-IDF) transformation is applied. TF-
IDF is a technique that highlights important n-grams in feature vectors.

DETECTION CLASSIFIER
Malware detection can be defined as a binary classification problem. That is,

the training data is sampled from two classes: the benign and malicious classes.
Therefore, we use a Logistic Regression (LR) classifier for class prediction. LR is
suitable for machine learning problems with binary classes. LR is a Generalized
Linear Regression (GLM) with a non-linear function called sigmoid, also known as
the logistic function.

DATASET COLLECTION
To evaluate our malware detector, we conduct an e10eriment on two

different Windows platforms. Each platform generates a separate dataset that
includes prefetch files samples for benign and malware programs.

80 “Innovations in Science and Technologies” ilmiy-elektron jurnali

DETECTION PERFORMANCE
To show the effectiveness of our malware detector on the prefetch datasets,

we compare our LR detectors to Support Vector Machine (SVM) detectors. SVM
have established state-of-the-art results in multiple malware detection and
classification research. We compare our n-Grams LR detectors to the best SVM
detectors from. We use XP-fold cross-validation with stratified sampling to create a
balanced distribution of benign and malware samples in each fold. On the Prefetch-
7 dataset, n-Grams LR detectors achieve as high as 0.997 TPR on 1.2 × 10-3 FPR.
On the contrary, SVM detectors achieve a lower TPR at a higher FPR. On the
Prefetch-10 dataset, n-Grams LR detectors achieve 1.0 TPR and zero to 8.4×10-5
FPR, which is the ideal FPR for practical malware detection. This experiment shows
that LR detectors are superior to SVM detectors on prefetch datasets.

DETECTING MALWARE EVASION
To evaluate the effectiveness of our randomized feature selection technique,

we implement a general method to generate evasive malware from our samples. The
method appends benign traces to malware traces to evade malware detection. While
the method uses genetic programming to find the right mutation to succeed, we
replace genetic programming with a simple appending operation. In each iteration,
we append a benign trace to all the malware traces and measure the decrease in
detection accuracy. Next, we increase the length of the benign trace and repeat the
process until the end of the benign trace. We apply the same process for a randomly
selected subset of benign traces and average the detection scores across them.

CONCLUSIONS
We demonstrate that our malware detector is able to adapt to new

information and changes in the environment without decreasing its accuracy or
increasing its performance overhead. We also studied the resilience of our malware
detector to malware evasive techniques. This study led us to create a simple
randomization solution to harden the malware detector. In the future, we would like
to include techniques to detect when the detection accuracy degrades and adapt
accordingly. Moreover, we would like to further test our malware detector against
increasingly sophisticated evasive malware.

REFERENCES
1. Peiravian, N., and ZHU, X. Machine learning for android malware detection
using permission and api calls. In Tools with Artificial Intelligence (ICTAI), 2020
IEEE 25th International Conference on (2020), IEEE, pp. 300–305
2. Russinovich, M. Inside the windows 7 kernel: Part 3. Microsoft TechNet
Magazine (2021).

81 “Innovations in Science and Technologies” ilmiy-elektron jurnali

3. Axelsson, S. The base-rate fallacy and its implications for the difficulty of
intrusion detection. In Proceedings of the 6th ACM Conference on Computer and
Communications Security (2018), ACM, pp. 1–7.
4. Anzai, Y. Pattern recognition and machine learning. Elsevier, 2019
5. Lane, T., and Brodley, C. E. Approaches to online learning and concept drift
for user identification in computer security. In KDD (2018), pp. 259–263.
6. Kolter, J. Z., and Maloof, M. A. Learning to detect and classify malicious
executables in the wild. Journal of Machine Learning Research 7, Dec (2022), 2721–
2744.

