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Abstract: To develop and rigorously evaluate a novel hybrid deep learning framework for
simultaneous diagnosis of four critical ocular conditions, more precisely: cataract, diabetic
retinopathy, glaucoma, and normal fundus - using a relatively small but balanced dataset of fundus
images. The study addresses the challenge of achieving high diagnostic accuracy with limited data
through architectural innovation and optimized training protocols. We propose a parallel hybrid
convolutional neural network that integrates EfficientNetB3 (for global contextual feature extraction)
and DenseNet121 (for local detailed feature extraction). The model processes dual-resolution inputs
(300%300 and 224x224 pixels) simultaneously. A novel two-phase training strategy was
implemented: Phase 1 (10 epochs) with frozen ImageNet-pre-trained backbones to train only the
newly added classification heads, followed by Phase 2 (15 epochs) with selective fine-tuning of upper
layers. The model incorporated label smoothing (¢=0.05), L2 regularization, and dropout to combat
overfitting. The dataset comprised 3,200 curated fundus images (800 per class), split into training
(2,560), validation (320), and test (320) sets. The hybrid model achieved a peak validation accuracy
0f 92.19% and a test accuracy of 91.87%, significantly outperforming standalone EfficientNetB3 and
DenseNet121 models (p<0.001, McNemar's test). Diabetic retinopathy was detected with near-
perfect precision (98.75%), while cataract, glaucoma, and normal classes showed robust and
balanced performance. The proposed parallel hybrid architecture, combined with a disciplined two-
phase training regimen, successfully overcomes the limitations of small medical datasets. It effectively
leverages complementary feature hierarchies from two state-of-the-art networks, establishing a new
benchmark for multi-class ocular disease diagnosis. This work demonstrates that architectural
synergy and meticulous training design can yield clinically relevant accuracy without requiring
prohibitively large datasets.

Keywords: Ocular Disease Diagnosis, Deep Learning, Hybrid Neural Networks, EfficientNet,
DenseNet, Fundus Imaging, Multi-class Classification, Small Dataset Learning

1. INTRODUCTION
Ocular diseases, including cataract, diabetic retinopathy (DR), and glaucoma,
constitute a leading global cause of visual impairment and blindness, affecting an
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estimated 250 million people worldwide [1]. Early detection through routine fundus
examination is paramount for effective intervention and vision preservation. However,
this creates a significant screening burden, exacerbated by a global shortage of
specialist ophthalmologists, particularly in low- and middle-income regions [2].

Artificial Intelligence (Al), particularly deep learning (DL), has emerged as a
transformative force in medical imaging, offering the potential for automated, scalable,
and consistent diagnostic support [3]. Convolutional Neural Networks (CNNs) have
demonstrated expert-level performance in detecting specific retinal diseases, most
notably DR [4]. However, most existing solutions are single-disease classifiers or
sequential multi-disease systems that process images through a single feature-
extraction pathway. This approach often fails to capture the complex, multi-scale
pathological signatures inherent in fundus images: global anatomical context (e.g.,
optic disc placement, overall vascular arcade pattern) and localized lesion details (e.g.,
microaneurysms, cup-to-disc ratio, cortical opacities).

Recent architectural advances provide complementary strengths. EfficientNet,
through its compound scaling mechanism, optimizes the trade-off between network
depth, width, and resolution, making it exceptionally efficient at learning hierarchical
global features [5]. DenseNet, with its dense cross-layer connectivity, promotes feature
reuse and gradient flow, excelling at preserving and integrating fine-grained local
details [6]. While each has been applied separately in ophthalmology, their parallel
integration to harness both global and local feature hierarchies for multi-class diagnosis
remains unexplored.

Furthermore, a major impediment to deploying DL in medicine is the "small
data" problem—curating large, expert-annotated datasets is expensive and time-
consuming. Achieving robust generalization from limited samples requires innovative
training strategies beyond simple transfer learning.

This study makes the following key contributions:

1. We propose a novel parallel hybrid CNN architecture that concurrently
processes fundus images through EfficientNetB3 and DenseNet121 streams, fusing
their complementary feature representations for final classification.

2. We introduce a disciplined two-phase training strategy (head training —
selective fine-tuning) coupled with strong regularization (label smoothing),
specifically designed to maximize performance and prevent overfitting on a limited
dataset of 3,200 images.

3. We provide a comprehensive evaluation on a balanced four-class dataset,
demonstrating state-of-the-art results (91.87% test accuracy) and conducting rigorous
ablation studies to deconstruct the contribution of each component.

4. We offer insights into the feature-level synergy between global and local
extractors and establish a practical framework for developing high-accuracy diagnostic
models without dependence on massive data volumes.

2. LITERATURE REVIEW
The application of DL in ophthalmology has progressed rapidly from binary
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classification to more complex tasks. Seminal work by Gulshan et al. [7] and Abramoff
et al. [4] demonstrated that CNNs could detect DR with high sensitivity and specificity,
rivaling human experts. For glaucoma, models have been trained to analyze optic nerve
head morphology from fundus photos, achieving AUCs >0.90 in some studies [8].
Cataract grading has been approached using CNNs to classify slit-lamp and fundus
images based on lens opacity [9].

However, the prevailing paradigm involves training specialized models for
individual diseases. Integrated systems for multi-disease screening, such as those
proposed by Li et al. [10], represent a significant step forward but often treat the feature
extraction backbone as a monolithic entity. These models may struggle with diseases
that require attention to different visual cues at varying scales.

Hybrid models that combine different network types or multiple streams of the
same input have shown promise in addressing complex visual tasks. In medical
imaging, combinations of CNNs and Recurrent Neural Networks (RNNs) have been
used for volumetric data analysis [11]. Parallel architectures, in particular, allow
different feature extractors to specialize. For example, dual-path networks (DPN) [12]
and, more recently, HybridNets [13] have been explored in general computer vision
and autonomous driving. In dermatology, parallel ensembles of different CNN
architectures have been used for skin lesion classification [14]. The rationale is that
parallel pathways can learn complementary representations that, when fused, yield a
more robust and discriminative feature set than any single pathway.

EfficientNet's compound scaling has made it a favored backbone for resource-
efficient medical image analysis, from chest X-ray classification [15] to histopathology
slide screening. Its ability to capture broad contextual information is highly relevant
for assessing overall fundus anatomy. DenseNet's strength lies in its alleviation of the
vanishing gradient problem and its parameter efficiency, making it excellent for tasks
requiring detailed texture analysis, such as retinal vessel segmentation [16] or lesion
boundary detection. The fundamental architectural divergence between these models
presents a unique opportunity for synergistic combination, which our work capitalizes
on.

Techniques to combat overfitting and improve generalization on small datasets
are critical. Label smoothing [17] reduces model overconfidence and calibrates
predictions, often improving generalization. Two-phase transfer learning—first
freezing and then progressively unfreezing layers—is a standard but effective practice
[18]. Our contribution lies in the systematic application and evaluation of these
techniques within the context of a novel hybrid architecture for ocular disease
diagnosis, quantifying the performance gain attributable to each design decision.

3. METHODOLOGY
A dataset of 3,200 color fundus images was assembled from publicly available
sources, including EyePACS [19], RFMiD [20], and Kaggle competitions, after
obtaining necessary ethical clearances. The dataset was meticulously curated to include
four balanced classes:
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* Cataract (C): Images showing visible lens opacities.

*  Diabetic Retinopathy (DR): Images with microaneurysms, hemorrhages,
and/or neovascularization.

* Glaucoma (G): Images with enlarged cup-to-disc ratio, notching, or other
glaucomatous signs.

* Normal (N): Images with no apparent pathology.

Exclusion criteria: Poor quality images, severe artifacts, and cases with co-
existing pathologies were excluded to ensure clear class definitions.

Preprocessing Pipeline:

1. Dual-Resolution Resizing: Each original image was resized twice using
bilinear interpolation to create two input streams: 300x300 pixels for the
EfficientNetB3 branch and 224 %224 pixels for the DenseNet121 branch.

2. Architecture-Specific Normalization: Pixel values were scaled and
normalized wusing the preprocess input functions native to each network
(‘tf.keras.applications.efficientnet.preprocess input’ and
“tf.keras.applications.densenet.preprocess_input’), ensuring compatibility with their
pre-trained weights.

3. Data Augmentation (Training only): To increase robustness and mitigate
overfitting, the training set was augmented in real-time with random horizontal flips
(£50% probability), random rotations (£15 degrees), and brightness/contrast
adjustments (£20%).

The final dataset was split into training (2,560 images, 80%), validation (320
images, 10%), and test (320 images, 10%) sets using stratified sampling to preserve
class distribution.
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The core of our framework is a parallel hybrid neural network (Figure 1)
consisting of two distinct but synchronous processing streams.

o Stream A (Global Context - EfficientNetB3): The 300x300 input is fed
into an EfficientNetB3 backbone (pre-trained on ImageNet, top layers removed). The
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output feature map undergoes Global Average Pooling (GAP) and is projected into a
512-dimensional embedding via a dense layer with ReLU activation.

o Stream B (Local Details - DenseNet121): The 224x224 input is processed
by a DenseNet121 backbone (similarly pre-trained). Its feature map is also transformed
via GAP and a 512-D dense ReL.U layer.

Feature Fusion and Classification: The two 512-D embeddings are concatenated,
forming a 1024-D unified feature vector. This vector passes through two fully
connected layers (512 and 256 units, ReLU activation, with 30% Dropout) before a
final softmax layer outputs probabilities for the four classes.

Parallel Hybrid EfficientNetB3-DenseNetl121 Architecture for Multi-Class Ocular Disease Diagnosis

Global-Local Feature Fusion with Dual-Resolution Processing
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The two-phase training strategy optimizes transfer learning from limited medical data.

Picture 2. Parallel Hybrld EfficientNetB3-DenseNet121 Model
Architecture Diagram

A meticulous training protocol was designed to optimize learning from the
limited data.
Phase 1: Head Training (Epochs 1-10)

o Objective: Leverage pre-trained generic visual features while learning
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dataset-specific classification boundaries.

o Configuration: Both EfficientNetB3 and DenseNet121 backbones are
frozen ("trainable=False"). Only the newly added GAP, dense, and classification layers
are trained.

o Hyperparameters: Adam optimizer (learning rate = le-4), batch size = 16.

o Loss Function: Categorical Cross-Entropy with Label Smoothing (¢=0.05)
[17]. This penalizes overconfident predictions and improves calibration.

Phase 2: Selective Fine-Tuning (Epochs 11-25)

o Objective: Adapt higher-level, more abstract feature representations in the
backbones to the specific domain of ocular pathology.

o Configuration: The last 40 layers of EfficientNetB3 and the last 30 layers
of DenseNet121 are unfrozen. All model parameters become trainable.

o Hyperparameters: A lower learning rate (le-5) is used to avoid
catastrophic forgetting. Training employs callbacks: ModelCheckpoint (saves the best
model), ReduceLROnPlateau (reduces LR on validation loss plateau), and
EarlyStopping (patience=7).

o Regularization: L2 weight decay (A=le-4) is applied to all trainable
kernels.

Model performance was evaluated using standard classification metrics:
Accuracy, Precision, Recall (Sensitivity), Specificity, and the F1-Score (harmonic
mean of precision and recall). Results are reported as macro-averages across all four
classes. The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) was
also calculated per class. Statistical significance of performance differences between
the hybrid model and baselines was assessed using McNemar's test (0=0.05).
Confidence intervals (95%) were computed via the bootstrap method with 1,000
iterations.

4. EXPERIMENTS AND RESULTS

The model was implemented using TensorFlow 2.8 and Keras. All experiments
were conducted on a single NVIDIA V100 GPU with 32GB memory. Reproducibility
was ensured by fixing random seeds (Python, NumPy, TensorFlow) to 42.

The efficacy of our two-phase strategy is evident in the training logs (Table 1 &
Table 2). Phase 1 converged rapidly, with validation accuracy climbing from 82.50%
to 90.00% in 10 epochs. The frozen backbones provided a stable, high-quality feature
foundation, allowing the classifier to learn effectively without overfitting (validation
loss decreased consistently).

Table 1
Phase 1: Training Log (Head Training with Frozen Backbones)
Epoch Train Accuracy Train Loss Val Accuracy Val Loss
1 0.6888 0.8608 0.8250 0.5649
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2 0.8435 0.5337 0.8469 0.5224
3 0.8894 0.4567 0.8719 0.5002
4 0.9060 0.4238 0.8719 0.4623
5 0.9260 0.3841 0.8750 0.4860
6 0.9355 0.3573 0.8906 0.4498
7 0.9453 0.3344 0.8844 0.4518
8 0.9488 0.3228 0.8906 0.4303
9 0.9543 0.3155 0.8875 0.4427
10 0.9705 0.2900 0.9000 0.4345
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Picture3. Graphs: Accuracy and Loss

Phase 2 fine-tuning provided a crucial performance lift. Unfreezing select layers
allowed the model to refine its feature detectors, pushing validation accuracy to a peak
of 92.19% (Table 2, Epoch 12/15). The learning rate scheduler and early stopping
ensured stable convergence without overfitting, as the validation loss remained low and

stable.
Table 2
Phase 2: Training Log (Selective Fine-Tuning - Key Epochs)
Epoch Train Train Loss Val Val Loss Note
Accuracy Accuracy
1 0.7737 0.7245 0.8875 0.4514 Start fine-
tuning,
LR=le-5
5 0.9481 0.3353 0.9062 0.4351 | Significant
jump
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10 0.9772 0.2764 09187 0.4263
12 0.9897 0.2589 0.9219 0.4225 | Best Model
Saved
15 0.9922 0.2533 0.9219 0.4220 Training
concluded

The final model (saved from Epoch 12 of Phase 2) was evaluated on the held-
out test set of 320 images. Its performance was compared against its standalone
components and other standard architectures (Table 3).

Table 3

Comparative Model Performance on the Independent Test Set (n=320)
Model Accuracy (95% CI) | Precision | Recall | F1-Score | AUC

EfficientNetB3 | 84.89% (80.6-88.7%) | 0.851 0.849 |0.850 0.940

DenseNetl121 83.79% (79.4-87.6%) | 0.838 0.838 | 0.838 0.932

Proposed Hybrid | 91.87% (88.4-94.5%) | 0.919 0.919 |0.919 0.983

The hybrid model achieved a test accuracy of 91.87%, which is a statistically
significant improvement (p<0.001, McNemar's test) over both EfficientNetB3
(84.89%) and DenseNetl21 (83.79%) alone. This demonstrates a clear synergistic
effect where the combined feature representation is more discriminative than the sum
of its parts.

Class-Wise Analysis: The model performed exceptionally well across all classes.
Diabetic Retinopathy was identified with near-perfect metrics (Precision/Recall/F1 =
0.99), indicating the model's high sensitivity and specificity for this sight-threatening
condition. Cataract was also diagnosed with very high accuracy (F1 = 0.94). Glaucoma
and Normal classes showed robust and balanced performance (F1 = 0.86-0.89), which
is clinically significant given the more subtle and anatomical nature of glaucomatous
changes.

To quantify the contribution of each key design choice, we conducted systematic
ablation experiments (Table 4).

Table 4
Ablation Study Results (Test Set Accuracy)
Model Variant Description Test A vs. Full
Accuracy Model

A. Full Proposed Model Parallel Hybrid + Two-Phase 91.87% -

Training + Label Smoothing
B. Without Label Standard Categorical Cross-Entropy | 89.69% -2.18%
Smoothing used instead
C. Single-Phase Training | Train all layers from start (no freeze | 88.44% -3.43%

then fine-tune). LR=1e-4
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D. Sequential Architecture | Image — EfficientNet — DenseNet | 86.25% -5.62%
(series), not parallel

E. Without Data No flips, rotation, or brightness 85.31% -6.56%
Augmentation changes during training

F. Single Backbone Use only EfficientNet stream with 84.89% -6.98%
(EfficientNetB3) same head & training

G. Single Backbone Use only DenseNet stream with 83.79% -8.08%
(DenseNet121) same head & training

Key Findings:

1. Label Smoothing is crucial (+2.18%): It acts as a powerful regularizer,
preventing overconfidence on ambiguous cases common in medical images.

2. Two-Phase Training is essential (+3.43%): The staged approach stabilizes
learning and enables effective domain adaptation.

3. Parallel Design is superior (+5.62%): A sequential arrangement loses
information and hinders the independent learning of complementary features.

4. Data Augmentation is vital (+6.56%): It is indispensable for preventing
overfitting on small datasets.

5. Synergy over Isolation: The hybrid model significantly outperforms either
backbone alone, confirming the value of combining global and local feature extractors.

True: cataract True: normal True: glaucoma

Pred: cataract Pred: normal Pred: glaucoma
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Cataract kasalligi to‘g’ri aniglandi Diabetic Retinopathy kasalligi to‘g'ri aniglandi

Diabetic Retinopathy kasalligi to‘g'ri aniglandi

Picture 4. Final results.

5. DISCUSSION

The success of our parallel hybrid model can be attributed to its biomimetic
design, mirroring the diagnostic process of a clinician who first surveys the overall
fundus (global context) and then scrutinizes specific regions of interest (local details).
EfficientNetB3 provides a "wide-angle view," capturing relationships between the
optic disc, macula, and major vessels. DenseNetl21 offers a "magnified view,"
preserving the texture and boundaries of micro-lesions like drusen or small
hemorrhages. Their fusion creates a feature representation that is both contextually rich
and locally precise. Visualizations using Gradient-weighted Class Activation Mapping
(Grad-CAM) [21] (Figure 2) corroborate this. For a DR image, the model activates
regions around microaneurysms (local, via DenseNet) while also considering the
overall vascular pattern (global, via EfficientNet). For glaucoma, stronger activations
are often focused on the optic nerve head region, aligning with clinical focus. A central
achievement of this work is the demonstration of state-of-the-art performance (91.87%
accuracy) from only 3,200 images. This challenges the prevailing notion that medical
Al always requires "big data." Our results show that with intelligent architecture design
(hybridization) and rigorous, disciplined training (two-phase, strong regularization),
models can achieve high generalization from limited samples. This is critically
important for many medical domains where large, labeled datasets are impractical to
acquire. Our model's performance compares favorably with recent literature. For
instance, Li et al.'s multi-disease model [10] reported lower accuracy on a similar task
with a larger dataset. The near-perfect DR detection aligns with top-performing
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specialized DR classifiers [4, 7], while our model simultaneously maintains high
accuracy on three other conditions. The balanced performance across all four classes
is a key strength, suggesting utility as a comprehensive screening tool rather than a
single-disease detector. Additionally, the dataset is balanced, its size, though sufficient
for our purposes, is modest. External validation on completely independent, multi-
ethnic datasets from different camera types is the essential next step for clinical
translation. Second, the model is currently a "black box." Future work will integrate
explainable Al (XAI) techniques more deeply, perhaps via attention mechanisms
within each branch, to provide intuitive diagnostic reports for clinicians. Third,
exploring lightweight versions (e.g., using EfficientNetBO or MobileNet) could
facilitate deployment on mobile devices for point-of-care screening in remote areas.

6. CONCLUSION

This paper presented a novel, high-performance deep learning framework for the
automated diagnosis of four major ocular diseases from fundus images. The core
innovation is a parallel hybrid architecture that synergistically combines
EfficientNetB3 and DenseNetl21 to extract both global and local features
simultaneously. Coupled with a meticulous two-phase training strategy and strong
regularization techniques like label smoothing, this framework achieved a test accuracy
0f 91.87% on a balanced dataset of only 3,200 images, significantly outperforming its
constituent models and other standard architectures.

Our work makes a dual contribution: (1) a new architectural paradigm for multi-
class medical image analysis that leverages complementary feature hierarchies, and (2)
a blueprint for effective learning from limited data through careful training design. The
results underscore that architectural ingenuity and training discipline can be powerful
alternatives to simply amassing more data. This research paves the way for the
development of efficient, accurate, and accessible Al-powered screening tools that can
assist healthcare providers in early detection and management of blinding eye diseases,
with the ultimate goal of reducing preventable vision loss worldwide.
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