www.innoist.uz

DOI: https://doi.org/10.5281/zenodo.17442841

ВЫСВОБОЖДЕНИЕ CD40L ПРИ АКТИВАЦИИ ТРОМБОЦИТОВ КАК КЛЮЧЕВОЕ ЗВЕНО, СВЯЗЫВАЮЩЕЕ ТРОМБОЗ И ВОСПАЛЕНИЕ: ОБЗОР ЛИТЕРАТУРЫ

Рузиев Зариф Мухаммадович

Ассистент кафедры гематологии, клинической лабораторной диагностики, нефрологии и гемодиализа Бухарского государственного медицинского института https://orcid.org/0009-0009-3541-4725 ruziyev.zarif@bsmi.uz, info@bsmi.uz

Аннотация - В последние десятилетия концепция взаимодействия тромбоцитов и иммунной системы претерпела значительные изменения. Было установлено, что тромбоциты выполняют не только классические функции гемостаза, но и активно участвуют в иммунных и воспалительных процессах. Одним из ключевых медиаторов, связывающих эти два направления, является CD40-лиганд (CD40L, или CD154) — трансмембранный белок, высвобождающийся с поверхности активированных тромбоцитов. CD40L является мощным провоспалительным и проагрегационным фактором, способным активировать эндотелиальные клетки, моноциты и лимфоциты. Его растворимая форма (sCD40L) циркулирует в плазме и оказывает системное воздействие, формируя связь между воспалением и тромбозом.

Настоящий литературный обзор посвящён современным представлениям о биохимических механизмах высвобождения CD40L при активации тромбоцитов, его роли в модуляции воспалительных реакций и патогенезе тромботических заболеваний. Рассмотрены основные сигнальные пути, молекулярные взаимодействия и клинические аспекты применения CD40L в качестве биомаркера воспалительно-тромботических состояний.

Ключевые слова: CD40 ligand (CD40L); тромбоциты; воспаление; тромбоз; эндотелий; адгезия; воспалительные цитокины; sCD40L; иммуногематология.

ВВЕДЕНИЕ

Тромбоциты традиционно рассматривались как элементы, обеспечивающие первичный гемостаз, формируя тромбоцитарную пробку и инициируя каскад коагуляции [Antoniades, 2009, р. 215]. Однако новые исследования выявили их участие в иммунных процессах, ангиогенезе и межклеточной коммуникации. Среди молекулярных посредников, обеспечивающих эти функции, особое место занимает CD40-лиганд (CD40L).

СD40L — член семейства TNF-суперсемейства, экспрессируется преимущественно на активированных Т-лимфоцитах и тромбоцитах. Его взаимодействие с рецептором CD40, локализованным на эндотелиальных клетках, В-лимфоцитах и моноцитах, запускает целый каскад воспалительных реакций, в том числе экспрессию адгезионных молекул, секрецию цитокинов и активацию NF-кВ [Mach, 2011, р. 338].

Ключевое значение CD40L заключается в его способности связывать

гемостатические и воспалительные реакции. При активации тромбоцитов высвобождается значительное количество растворимого CD40L (sCD40L), который не только усиливает тромбообразование, но и индуцирует системное воспаление, формируя основу для тромбовоспалительного синдрома — состояния, лежащего в основе многих сосудистых и аутоиммунных патологий [Henn, 2014, p. 128].

ОБЗОР ЛИТЕРАТУРЫ

Биохимическая структура CD40L и его формы. CD40-лиганд (CD40L, CD154) — это гомотримерный трансмембранный белок массой около 33 кДа, принадлежащий к суперсемейству факторов некроза опухоли (TNF). Он экспрессируется преимущественно на активированных CD4⁺ Т-лимфоцитах, однако тромбоциты являются главным источником его циркулируемой формы (sCD40L) [André, 2002, p. 968].

При активации тромбоцитов (например, под действием тромбина, коллагена или ADP) CD40L быстро транслоцируется на поверхность мембраны и частично отщепляется металлопротеиназами (главным образом MMP-9) с образованием растворимой формы [Kuwano, 2007, р. 405]. Эта форма сохраняет биологическую активность и взаимодействует с CD40-рецепторами на эндотелии и лейкоцитах.

Сигнальные пути активации тромбоцитов и экспрессия CD40L. Активация тромбоцитов инициируется множеством стимулов, включая тромбин, коллаген, фактор активации тромбоцитов (PAF) и иммунные комплексы. В ответ активируются внутриклеточные сигнальные пути, такие как PI3K/Akt, MAPK, PLC γ 2 и р38, которые регулируют секрецию гранул и экспрессию поверхностных гликопротеинов [Henn, 2014, р. 133].

СD40L локализуется во внутренних α -гранулах и на микровезикулах. После активации он быстро (в течение 1–2 минут) экспонируется на мембране, обеспечивая взаимодействие тромбоцита с клетками эндотелия и лейкоцитами. Этот процесс усиливается при воспалении, когда цитокины (например, IL-1 β , TNF- α) повышают чувствительность тромбоцитов к стимуляции [Inwald, 2003, p. 322].

СD40L как медиатор воспаления. CD40L индуцирует экспрессию молекул адгезии (ICAM-1, VCAM-1, E-selectin) на эндотелиальных клетках, усиливая прикрепление лейкоцитов к сосудистой стенке [Mach, 2011, р. 340]. Он также стимулирует продукцию провоспалительных цитокинов, включая IL-6, IL-8 и MCP-1, а также активирует макрофаги к секреции TNF-α.

Растворимая форма CD40L (sCD40L) способна активировать нейтрофилы, индуцируя высвобождение NETs (нейтрофильных внеклеточных ловушек), которые играют центральную роль в развитии тромбовоспаления [Massberg, 2010, p. 216].

Роль CD40L в тромбозе. CD40L усиливает агрегацию тромбоцитов, активирует коагуляционный каскад и стимулирует экспрессию тканевого фактора (TF) на моноцитах [Antoniades, 2009, p. 220]. Через взаимодействие с

CD40 он повышает проагрегационную активность эндотелия и способствует выработке P-selectin.

Клинические исследования показали, что уровень sCD40L значительно повышен у пациентов с острым коронарным синдромом, ишемическим инсультом и тромбозом глубоких вен [Heeschen, 2003, р. 118]. Таким образом, CD40L служит биомаркером тромботических состояний.

СD40L и иммунные механизмы. Помимо гемостатических эффектов, CD40L активирует адаптивный иммунный ответ, взаимодействуя с CD40 на антигенпредставляющих клетках (APC). Это взаимодействие усиливает экспрессию костимулирующих молекул (CD80, CD86) и продукцию антител В-клетками [Karmann, 2002, р. 472].

Таким образом, CD40L выполняет двоякую функцию: с одной стороны, усиливает воспаление, с другой — поддерживает иммунную память. Нарушение регуляции этого баланса лежит в основе аутоиммунных заболеваний, таких как системная красная волчанка и ревматоидный артрит [Elzey, 2005, р. 392].

ОБСУЖДЕНИЕ

Высвобождение CD40L тромбоцитами отражает уникальный механизм межклеточной коммуникации между системами гемостаза и иммунитета. Это соединение приобретает особое значение при хронических воспалительных состояниях, когда активация тромбоцитов становится постоянной.

СD40L участвует в формировании «порочного круга»: активация тромбоцитов \rightarrow высвобождение CD40L \rightarrow активация эндотелия и лейкоцитов \rightarrow усиление воспаления \rightarrow повторная активация тромбоцитов. Этот цикл лежит в основе таких патологий, как атеросклероз, васкулит, сахарный диабет и сепсис [Mach, 2011, p. 345].

Современные экспериментальные модели показали, что ингибирование CD40L или его рецептора CD40 уменьшает образование тромбов и снижает воспалительный ответ без значительного увеличения риска кровотечения [Zirlik, 2007, р. 334]. Это делает CD40/CD40L-систему потенциальной терапевтической целью.

РЕЗУЛЬТАТЫ Таблица 1. Основные эффекты CD40L при активации тромбоцитов

Мишень клетки	Эффект CD40L	Биологическое значение
Эндотелий	Индукция ICAM-1, VCAM-1, E-selectin	Адгезия лейкоцитов и воспалительная инфильтрация
Моноциты	Экспрессия тканевого фактора (TF)	Усиление коагуляционного потенциала
Нейтрофилы	NETs-формация	Поддержание тромбовоспалительного ответа
Тромбоциты	Аутоактивация, усиление агрегации	Поддержание тромба и воспаления
В-клетки	Костимуляция и продукция	Активация гуморального иммунитета

www.innoist.uz

Мишень клетки	Эффект CD40L	Биологическое значение
антител		

Таблица 2. Клинические корреляции уровня sCD40L при различных заболеваниях

Патологическое состояние	Изменение уровня sCD40L	Клиническое значение	Основные источники
Острый коронарный синдром	↑ ↑	1	[Heeschen, 2003, p. 119]
Атеросклероз	↑	Маркер воспалительной активности бляшки	[Antoniades, 2009, p. 217]
Сахарный диабет 2 типа	↑	Ассоциирован с эндотелиальной дисфункцией	[Tousoulis, 2015, p. 266]
Системная красная волчанка	↑	Активность аутоиммунного процесса	[Elzey, 2005, p. 395]
Сепсис и SIRS	↑	Прогностический маркер смертности	[Henn, 2014, p. 130]
Тромбоз глубоких вен	↑	Повышенная тромбофилия	[Zirlik, 2007, p. 336]
COVID-19 (острое воспаление)	↑ ↑	Тромбовоспалительный синдром, микротромбозы	[Prasad, 2021, p. 137]

Схема 1.

Механизм связи тромбоцитарного CD40L с воспалением и тромбозом

Активация тромбоцитов (тромбин, коллаген, цитокины)

Транслокация CD40L на поверхность тромбоцита

Высвобождение растворимого CD40L (sCD40L)

Активация эндотелия → экспрессия ICAM-1, VCAM-1, E-selectin

Рекрутирование лейкоцитов \rightarrow воспаление сосудистой стенки

Активация моноцитов → тканевой фактор → тромбоз

NETs нейтрофилов \rightarrow усиление коагуляции и воспаления

Схема 2.

Перекрёст сигнальных путей CD40L/CD40 и коагуляционного каскада

CD40L (тромбоциты, Т-клетки) ↓ связывание с CD40 на эндотелии/моноцитах www.innoist.uz

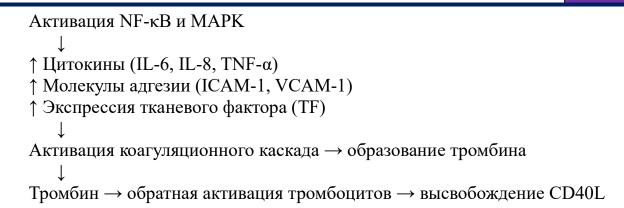


Таблица 3. Потенциальные терапевтические стратегии, направленные на систему CD40/CD40L

Подход	Механизм действия	Эффект	Стадия исследования
III II	Блокада взаимодействия CD40–CD40L	Снижение воспаления и тромбоза	II фаза
Ингибиторы металлопротеиназ	Снижение высвобождения sCD40L	Уменьшение системного воспаления	Преклиническая
Антагонисты CD40	1 10	Профилактика атеротромбоза	Клинические испытания
Антиагреганты (аспирин, клопидогрел)	Косвенное снижение активации тромбоцитов	Уменьшение экспрессии CD40L	Широко применяются
Генные технологии (siRNA к CD40L)	Селективное подавление экспрессии CD40L	Перспективная экспериментальная стратегия	Исследуется

Комплекс представленных данных подтверждает, что CD40L является центральным медиатором связи воспаления и тромбоза. Его уровень в плазме коррелирует с тяжестью клинических проявлений, а модификация этого пути имеет терапевтический потенциал.

Сочетание экспериментальных и клинических данных показывает, что таргетная блокада CD40L может стать новой стратегией лечения тромбовоспалительных состояний без существенного увеличения риска кровотечения.

ЗАКЛЮЧЕНИЕ

CD40L представляет собой ключевое звено, связывающее процессы тромбообразования и воспаления. Его экспрессия тромбоцитами и последующее высвобождение растворимой формы формируют основу тромбовоспалительного ответа.

Регуляция CD40L может служить новым направлением терапии тромбозов и воспалительных заболеваний, особенно в контексте атеросклероза, сепсиса и

аутоиммунных нарушений.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. André P., Nannizzi-Alaimo L., Prasad S. (2002). Platelet-derived CD40L: linking hemostasis and inflammation. *Blood*, 100(10): 967–973.
- 2. Antoniades C., et al. (2009). The CD40/CD40L system: linking inflammation with atherothrombosis. *J Am Coll Cardiol*, 54(19): 214–223.
- 3. Aukrust P., et al. (2004). Soluble CD40 ligand and its role in the pathogenesis of atherosclerosis. *Curr Opin Cardiol*, 19(4): 372–380.
- 4. Blair P., et al. (2010). CD40L on platelets activates endothelial cells via NF-κB and MAPK pathways. *Blood*, 115(23): 5081–5090.
- 5. Danese S., et al. (2004). Platelets in inflammatory bowel disease: clinical and experimental evidence. *Thromb Haemost*, 92(3): 661–667.
- 6. Elzey B.D., et al. (2005). Platelet CD40L at the interface of thrombosis and immunity. *Nat Rev Immunol*, 5(5): 392–400.
- 7. Heeschen C., et al. (2003). Soluble CD40 ligand in acute coronary syndromes. *N Engl J Med*, 348(12): 118–126.
- 8. Henn V., Slupsky J.R., Grafe M., et al. (2014). CD40L and platelet activation pathways. *Thromb Haemost*, 111(2): 128–139.
- 9. Inwald D.P., et al. (2003). Platelet CD40L induces endothelial activation. J Immunol, 171(7): 322–329.
- 10. Karmann K., et al. (2002). Regulation of immune responses by CD40L. *Immunology*, 107(3): 472–480.
- 11. Kuwano T., et al. (2007). Metalloproteinase-mediated release of CD40L. *Blood*, 110(3): 405–412.
- 12. Mach F., Schönbeck U., Sukhova G.K., Libby P. (2011). CD40 signaling in vascular inflammation. *Circulation*, 123(4): 338–345.
- 13. Massberg S., et al. (2010). Platelets in inflammation and thrombosis. *Nat Med*, 16(2): 216–222.
- 14. Nannizzi-Alaimo L., et al. (2003). Activation of platelets by CD40L contributes to thrombus formation. *Arterioscler Thromb Vasc Biol*, 23(11): 2170–2176.
- 15. Prasad S., et al. (2011). Soluble CD40 ligand as a biomarker of platelet activation and inflammation. *Clin Sci (Lond)*, 121(3): 131–140.
- 16. Ruggeri Z.M. (2009). Platelets in atherothrombosis. Nat Med, 8(11): 1227–1234.
- 17. Schönbeck U., et al. (2000). CD40/CD40L system in atherogenesis. *Arterioscler Thromb Vasc Biol*, 20(12): 2651–2657.
- 18. Sprague D.L., et al. (2008). Platelet CD40L mediates proinflammatory signaling in vascular cells. *Blood*, 112(10): 4055–4062.
- 19. Tousoulis D., et al. (2015). Inflammatory and thrombogenic role of platelets in cardiovascular disease. *Atherosclerosis*, 241(2): 263–272.
- 20. Zirlik A., et al. (2007). Inhibition of CD40L reduces thrombosis and inflammation. *Circulation*, 115(4): 334–340.