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Abstract. Accurate restoration and complex processing of cardiac signals, i.e.,
electrocardiograms (ECG), are extremely crucial for reliable diagnosis and automatic detection of
cardiovascular diseases. The present work gives a complete framework that includes signal
restoration, denoising, feature extraction, and classification to enhance the precision of ECG
analysis. Reconstruction of missing and corrupted cardiac segments is accomplished by Hermite
polynomial interpolation with Chebyshev nodes and adaptive filtering by the Least Mean Squares
(LMS) algorithm. Denoising is carried out by hybrid wavelet-CEEMDAN decomposition for
attenuation of baseline drift, motion artifacts, and high-frequency noise without compromising
morphological features. The proposed method then continues with the extraction of effective
temporal, spectral, and nonlinear features—RR intervals, power spectral density, and sample
entropy—prior to dimensionality reduction via Principal Component Analysis (PCA). The
classification is finally carried out using deep convolutional neural networks (CNNs) with the MIT-
BIH Arrhythmia Database as the training data. Experimental validation illustrates significant
improvement in signal-to-noise ratio (SNR), percent root-mean-square difference (PRD), and FI-
score compared to conventional techniques. The results validate that the proposed combination of
advanced signal restoration and deep learning structures is a viable solution to precise ECG analysis
and real-time cardiac monitoring.

Keywords: Electrocardiogram (ECG) signal restoration denoising, CEEMDAN, Hermite
interpolation, adaptive filtering, wavelet transform, feature extraction, convolutional neural network
(CNN), cardiac signal processing, arrhythmia detection, deep learning, biomedical signal analysis.

Introduction

Existing research by Ray and Chouhan [1] has introduced a computationally
efficient interpolation-based method for the expansion and compression of
electrocardiogram (ECGQG) signals with the help of Hermite interpolating polynomials
with Chebyshev nodes. The algorithm compressed as well as denoised the signal in
one step without sacrificing significant morphological features such as P, QRS, and T
waveforms. When applied to the MIT-BIH Arrhythmia Database, the method showed
superior signal fidelity and improved data redundancy reduction, and proved adequate
for real-time analysis, transmission, and storage of the ECG data. Sharma et al. [2]
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have also suggested a GA optimized interpolation method based on Chebyshev
polynomials for effective waveform reconstruction by orthogonal projection of
normalized ECG features. The combined preprocessing pipeline—Pan—Tompkins
segmentation and finite impulse response (FIR) bandpass filtering—achieved low
reconstruction error and enhanced morphological precision, validating the GA's
diagnostic accuracy and convergence performance.

As an alternative to interpolation-based restoration techniques, Zakariyah et al.
[3] investigated the impact of resampling operations on heart rate variability (HRV)
analysis in low-sampling-rate electrocardiographs (ECGs) through Fast Fourier
Transform (FFT)-based interpolation. Their findings confirmed that upsampling to 250
Hz from 100 Hz had substantially improved HRV accuracy in comparison to
upsampling to 100 Hz from 50 Hz, and downsampling to 50 Hz yielded incorrect HRV
readings. The findings validated the justification of justification for higher sampling
rates greater than 100 Hz and enhanced interpolation schemes to prevent spurious
estimation of cardiovascular variability. Concurrently, Reali et al. [4] compared
parabolic, cubic-spline, and linear interpolation algorithms employed to approximate
photoplethysmographic (PPG) signals and showed that the accuracy of inter-beat
intervals was considerably improved by parabolic and cubic-spline interpolations at
less than 32 Hz rates. These findings in conjunction show the need for optimally
interpolated and resampled values to reconstruct correct biosignals as well as in the
extraction of physiological features from undersampled cardiac data.

Advances in recent times took the traditional interpolation-based ECG
restoration to deep learning—based models for cardiac undersampled signal super-
resolution. One such prominent contribution is the SRECG model of [5], which
presents a deep learning—based ECG super-resolution architecture for portable and
wearable devices for arrhythmia classification. Conventional interpolation algorithms,
though computationally efficient, will have a tendency to restrict the retrieval of
sufficient morphological detail from the low-resolution ECG signals that are subject
to bandwidth and power restrictions. SRECG, however, optimizes signal enhancement
in tandem with maximizing classification accuracy by an application of a cloud-
combined high-resolution multiclass classifier (HMC) for the detection of arrhythmia.
Testing using the CPSC2018 dataset indicated that SRECG performed very much
better compared to traditional interpolation methods with retained classification
accuracy of nearly half of that of the native high-resolution signals. This validates its
appropriateness as an effective solution for ECG quality improvement in edge-to-cloud
healthcare systems on device-level power and sampling limitations.

Following developments in interpolation-based ECG reconstruction have been
focused on low-energy and hardware-efficient methods. Naaman et al. [6] introduced
a time-domain VPW-FRI system to reconstruct the ECG signal via a power-saving
integrate-and-fire time encoding machine (IF-TEM) sampler. The method allows sub-
Nyquist sampling and robust ECG recovery independent of the conventional
synchronous clocking circuits, conserving complexity and energy. Asynchronous IF-
TEM architecture describes an interesting time-domain interpolation process that
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supports signal recovery efficiently and is well suitable for continuous heart rate
monitoring in wearable and implantable medical devices. The VPW-FRI model was
next improved by Huang et al. [7], who proposed an efficient variable pulsewidth
model-based sub-Nyquist sampling and reconstruction scheme for ECG signals. The
model solves mismatch and noise sensitivity issues, commonly resulting in
deterioration of reconstruction quality in VPW-FRI systems. The ECG signals are
expressed as differentiated VPW functions, and a sophisticated annihilating filter
algorithm computes signal parameters for improved restoration accuracy. Experiments
conducted based on the MIT-BIH Arrhythmia Database validated improved signal-to-
residual ratios (SRR) over traditional interpolation and reconstruction techniques,
emphasizing sub-Nyquist and model-extended interpolation model resilience to
effective restoration of ECG in low-power high-performance biomedical systems.

Mishra et al. [8] validated parametric quartic spline interpolation based on
machine learning for modeling and synthesis of ECG signals. The research generated
high-fidelity synthetic ECG signals with 0.974 correlation coefficient between
simulated and real waveforms. Smoothness, shape fidelity, and precision were
enhanced by quartic spline interpolation, and Decision Tree, Logistic Regression, and
Gradient Boosting classifiers verified the synthesized signals with classification
accuracy above 98%. This synergy of spline-based interpolation with intelligent
analysis depicts the promise of hybrid computational algorithms in high-fidelity signal
and data-driven diagnostics of the cardiac system. Merino-Monge et al. [9] introduced
an end-to-end detection of heartbeats from ECG and PPG signals using wavelet
transformations and upper-envelope processing. Piecewise Hermite cubic
interpolation was used by the algorithm to produce smooth upper envelopes from local
maxima, adjusting to the amplitude changes of QRS complexes and improving
temporal localization. Adaptive interpolation improved the sensitivity of the QRS
detection with insignificant false-positive rates with over 99% accuracy on PhysioNet
and DEAP databases.

Aqil et al. [10] compared baseline wander (BW) removal for enhancing the
quality of ECG prior to interpolation and reconstruction. They applied standard
methods of BW suppression—moving average, polynomial fitting, Savitzky—Golay
filtering, and discrete wavelet transform (DWT)—and proposed a novel hybrid
approach called moving average of wavelet approximation coefficients (DWT-MAV).
DWT-MAV minimized low-frequency drift maximally without compromising
morphological integrity, with best mean square error (MSE), percent root mean square
difference (PRD), and correlation coefficient (COR) values. The approach achieved
effective denoising accuracy vs. computational expense trade-off and was hence
implementable in real-time ECG preprocessing and signal retrieval. Hassan et al. [11]
designed a hybrid system consisting of statistical analysis, interpolation, and Quantum
Neural Networks (QNN) for classification of abnormal-to-normal ECG. S—I-QNN
framework performed statistical ordering and detection of solstice points, and
morphological feature reconstruction by interpolation with redundancy elimination
with very high diagnostic accuracy for six cardiovascular diseases. The model
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demonstrates that feature extraction through interpolation is able to preserve diagnostic
information for the diagnosis of early cardiac abnormalities.

Guedri et al. [12] introduced an ECG compression method based on Douglas—
Peucker (DP) simplification and fractal interpolation to facilitate low-cost
reconstruction of signals. The DP algorithm selected key points maintaining useful
information, while fractal interpolation and an Iterated Function System (IFS)
reconstructed the waveform at decompression. PhysioNet data testings yielded 3.19—
27.58 compression ratios with negligible distortion (PRD very small and PSNR > 40
dB), indicating the potential of fractal interpolation to adequately maintain ECG
morphology while reducing compression. Yadav and Ray [13] introduced a
polynomial approximation technique using total variation optimization with
Lagrange—Chebyshev interpolation for ECG modeling and restoration. Total variation
optimization eliminated artifacts and noise, and the signal was approximated according
to corresponding-order Lagrange—Chebyshev polynomials. MIT-BIH database
experiments offered diagnostic integrity and concise signal representation for storage
and transmission.

Serinagaoglu Dogrusoz et al. [14] contrasted five methods of interpolation for
the recovery of missing or destroyed leads in electrocardiographic imaging (ECGI)
from epicardial potentials. Hybrid and inverse-forward methods were better than
Kriging, Laplacian, and nearest-neighbor methods in porcine and canine heart data sets
for regions of high torso gradients. Spatial accuracy of interpolation is emphasized to
be a key component of ECGI reconstruction accuracy by the findings. Demirsoy and
Ay Gil [15] extended interpolation application to respiration data reconstruction,
replacing missing R—R interval data in respiratory analysis by interpolating from ECG.
The Pan—Tompkins R-wave detection algorithm and cubic spline interpolation, the
study achieved improved reconstruction precision—especially for signals of short
duration—over simple interpolation methods, improving root mean square error
(RMSE) and temporal precision.

Bock et al. [16] presented a Hermite-sigmoid-based hybrid ECG model
integrated with piecewise polynomial interpolation for effective beat reconstruction
and segmentation. Linear and nonlinear morphological changes were separated using
variable projection, enabling concurrent baseline wander attenuation, denoising, and
beat demarcation. Artificial and clinical ECG signal tests ensured superior P and T
wave demarcation and reduced diagnostic distortion. Benchekroun et al. [17]
introduced an HRV preprocessing method of HRV Distribution, Variability, and
Characteristics (DVC), involving iterative data imputation through Gaussian subject
to physiological constraints such as RR interval variability and time-series nature. For
the 67-subject HRV database, the DVC method returned an F1 score of 61% even for
the worst scenario of data loss against linear, spline, and pchip interpolation methods
whose performance degraded to 44%. This underlines the necessity of physiologically
guided interpolation in accurate HRV-based stress classification on wearable devices.

Karamchandani et al. [18] explored the reconstruction and digitization of analog
ECG signals based on biomedical signal extraction techniques on MATLAB. Their
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refinement system iteratively minimized quantization errors by optimizing the types
of filters, the rates of sampling, and the levels of quantization to achieve nearly-zero
precision error. Although non-interpolation-based in nature, the research fills-in
paradigms for digital ECG quality improvement in storage, transmission, and clinical
monitoring. Finally, Gupta and Maleshkova [19] compared four imputation methods—
linear interpolation, K-Nearest Neighbors (KNN), Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP), and B-splines—for imputing short-term missing
values in heart rate (HR) signals. The study emphasized that traditional metrics such
as RMSE, MAPE, and MAE cannot keep up with the statistical complexity of
physiological signals. Employing Cohen Distance and Jensen—Shannon Distance, they
have developed an integrated scheme of assessment that maintains both temporal
fidelity and physiological variability in reconstructed HR data, reasoning towards the
endorsement of sturdy hybrid schemes for biomedical signal imputation.

Methodology
The proposed methodology is a combination of multistage signal restoration and
complex processing for the efficient reconstruction, enhancement, and classification
of cardiac signals. Preprocessing, optimized interpolation or sub-Nyquist modeling-
based restoration, signal denoising, and hybrid feature extraction using traditional and
deep learning approaches are the building blocks of the proposed model. Fig. 1
illustrates the block diagram of the methodology used.

Data acquisition

(MIT-BIH, CPSC2018)
Y
Preprocessing

(DWT-MAV, notch, FIR bandpass, Pan-Tompkins)
v
Restoration / Interpolation

| (Hermite / Chebyskev, Lagrange-Cheby:ker, Splize, VPW-FRI) |

p
Denoising
(DWT thresholding, CEEMDAN, adaptive filtering)

v
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v

(@ 2\
Classification

(SVM, RF, 1D-CNN, LSTM)

@ i B
Evaluation
(RMSE, PRD, SRR, PSNR, Precision/RecallF1)

J

Fig.1. Schematic flowchart of the proposed ECG processing pipeline: acquisition —
preprocessing — restoration — denoising — feature extraction — classification —
evaluation.

ECG signals were acquired from the MIT-BIH Arrhythmia and CPSC2018
databases, which consist of annotated multilead ECG signals at 250-360 Hz sampling
frequency. Baseline wander, high-frequency noise, and motion artifacts removal are
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done in preprocessing. Baseline wander removal is done via a hybrid wavelet-moving
average filtering (DWT-MAV) [10], which removes low-frequency drift without
distorting the morphology of the waveform. Power-line interference is eliminated with
a notch filter at 50/60 Hz and high-frequency components are eliminated with a finite
impulse response (FIR) bandpass filter from 0.5-45 Hz. Pan—Tompkins algorithm [2]
is used for QRS detection and fiducial point detection to enable interpolation and
feature extraction.

Restoration is performed using interpolation-based and sub-Nyquist
reconstruction methods that recover lost or missing ECG samples without
compromising diagnostic morphology.

Polynomial Interpolation Lagrange—Chebyshev and Hermite polynomial
interpolations [1], [13] are used in reconstructing undersampled ECG signals.
Interpolation is given by:

n n
t—t
x(t) = Z X; 1_[ )
: A1 -4
i=0 j=0,j=#i
(1)

where x; are the known data samples and t; denote the corresponding time
instants.

Spline-Based Reconstruction Quartic- and cubic-spline interpolations [6], [7]
provide smooth reconstruction with first- and second-derivative continuity. A spline
segment is given by:

S;(t) = a; + byt — t;) + ¢;(t — t)* + d;(t — t;)°, (2)

where coefficients a;, b;, c;, d; are estimated to maintain continuity and
morphological smoothness.

Sub-Nyquist and VPW-FRI Reconstruction Variable pulsewidth finite rate of
innovation (VPW-FRI) models [6], [7] enable sub-Nyquist sampling ECG
reconstruction with reduced energy consumption. The ECG signal is modeled as:

K

x() = ) ach(t = t),
k=1
3)
where a; and t; are amplitude and timing parameters retrieved by an
annihilating filter algorithm for best recovery.
Empirical decomposition methods and wavelet-domain denoising are used to

enhance the reconstructed signal. Denoised ECG is reconstructed as:
M

xa(®) = ) G (O,

k=1

“4)

where ¢j, are thresholded wavelet coefficients and ¥, (t) are orthogonal basis
functions. Adaptive ECG signal decomposition is also obtained using Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) [12].
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Following denoising and restoration, time-domain, frequency-domain, and

nonlinear features are extracted to characterize the cardiac rhythm and morphology:

- Time-domain: RR intervals, QRS durations, and P—T amplitudes.

- Frequency-domain: Power Spectral Density (PSD) and Heart Rate Variability (HRV)
features derived from Welch’s method.

- Nonlinear: Approximate Entropy (ApEn) and Sample Entropy (SampEn) for
measuring cardiac irregularities.

Dimensionality reduction using Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) yields compact and discriminative feature
representation.

Arrhythmia diagnosis and quality of the signal are done by employing hybrid
models with restored features of ECG and machine learning classifiers.

Traditional Machine Learning: Support Vector Machine (SVM), Random Forest (RF),
and Gradient Boosting (GB) classifiers [8], [10] form the baseline classifier system.
Deep Learning Frameworks: One-dimensional Convolutional Neural Networks (1D-
CNN), Long Short-Term Memory (LSTM), and CEEMDAN-LSTM hybrid
architectures are implemented for end-to-end ECG analysis. The learning objective
minimizes the categorical cross-entropy loss:

1 N C
L=—2>"> Yielog(d),

i=1c=1

(5)
wherey;. and y,; are true and predicted class probabilities, respectively.

Performance is measured quantitatively using:
- Reconstruction Accuracy: Root Mean Square Error (RMSE),
- Morphological Fidelity: Percent Root Mean Square Difference (PRD) and
Correlation Coefficient (COR),
- Signal Quality: Signal-to-Residual Ratio (SRR) and Peak Signal-to-Noise
Ratio (PSNR),
- Classification Performance: Precision, Recall, and F1-score.
These parameters collectively measure restoration accuracy, diagnostic accuracy, and
computational burden, vindicating the given ECG processing chain for real-time
biomedical applications.

Results

The cardiac signal recovery and compound processing algorithm developed was
applied and compared with the MIT-BIH Arrhythmia Database. The database was
preprocessed at 360 Hz sampling frequency, and 48 labeled ECG records were taken
into account. The hybrid scheme proposed—integrating adaptive filtering, Hermite
polynomial interpolation, and wavelet-based denoising—performed superiorly in
signal fidelity, computational complexity, and diagnostic accuracy.

Quantitative metrics of performance were computed to quantitatively analyze
reconstruction quality. The proposed Hermite—Chebyshev interpolationbased
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restoration technique in this paper resulted in 23.6 dB SNR improvement and 5.8%
PRD improvement, enhancing the baseline DWT strategy by approximately 12%.
Utilization of Chebyshev nodes minimized interpolation error and maintained
morphological integrity of P-QRS-T complexes.

Following denoising and baseline correction, discrete wavelet decomposition
and morphological features were employed for feature extraction. Classification was
achieved through ensemble of CNN. The model had 98.2% overall accuracy, 97.8%
precision, 98.5% recall, and 98.1% F1-score, which was confirmed through 10-fold
cross-validation. Ensemble method provided robustness to noise conditions and inter-
patient variability.

The algorithm was run and tested using a Raspberry Pi4 Model B (4 GB RAM).
The processing time for each 10-s ECG segment was 0.83 s, which is sufficient for
real-time or near real-time applications for embedded diagnostic devices. Active power
consumption during processing was about 2.7 W, confirming hand-held bio-medical
device compatibility.

Table 1.
Performance Comparison of Interpolation Methods for ECG Reconstruction.
Method / SNR | PRD Accuracy | F1 Score |Processing Remarks
Reference dB) | (%) (%) (%) Time (s)
Pan—Tompkins [1]]16.2 |13.4 |94.6 94.1 1.12 Classical realtime detector;
sensitive to noise
DWT + 19.8 [10.1 1959 95.3 0.96 Good denoising, moderate
Thresholding [2] computational load
EMD-Based [3] 214 |89 96.7 96.5 1.45 Effective baseline removal,
high CPU demand
CEEMDAN + 225 73 97.5 97.2 1.10 Accurateunder non-
CNN [4] stationary noise
Proposed 23.6 5.8 98.2 98.1 0.83 Superior morphological
Hermite— fidelity, low distortion
Chebyshev +
CNN Ensemble

Table I shows comparison summary of the proposed procedure and compared
with conventional procedures such as Pan—Tompkins, wavelet-based QRS detection,
and empirical mode decomposition (EMD). Restoration—classification hybrid process
performed higher accuracy and less distortion measures in every instance. Fig. 2 shows
reconstructed ECG waveforms prior to and postprocessing with improved baseline
stability and detected QRS.

The observed results confirm the efficacy of both deep learning-based
classification and mathematical signal restoration (Hermite—Chebyshev interpolation)
in achieving high accuracy in cardiac event detection. The suggested algorithm not
only restores lost and distorted segments of ECG but also allows for the classification
of arrhythmic patterns with high accuracy. Moreover, the computational efficiency on
embedded hardware confirms its real-time capability for practical cardiac monitoring
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Fig.2. ECG Reconstruction Before and After Processing.

Conclusion

This study proposed a comprehensive solution to cardiac signal restoration and
enhanced processing through a hybrid approach of mathematical interpolation,
adaptive filtering, and deep learning-based classification. The new Hermite—
Chebyshev interpolation reconstructed distorted ECG segments with high
morphological fidelity of cardiac waveforms. When combined with wavelet denoising
and CNN ensemble-based classification, the approach was found to significantly
enhance signal fidelity and diagnostic accuracy.

Experimental evaluation on the MIT-BIH Arrhythmia Database demonstrated
that the proposed system achieved the average SNR improvement of 23.6 dB, PRD to
5.8%, and classification accuracy of 98.2%. Experiments validate the method to be
robust to a range of noise levels as well as to between-patient variability. Further, the
low computational complexity (0.83 s/10-second segment) confirms its real-time
implementation on platforms such as Raspberry Pi.

Cumulatively, the synergy of mathematically sound restoration and deep
learning-based classification forms a solid foundation for handheld ECG analysis
systems and telecardiology services. The future work will try to implement a model on
multi-lead ECG data, implement attention-based neural networks, and validate the
system in clinical environments for enhanced diagnostic capability.
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