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Abstract. Accurate restoration and complex processing of cardiac signals, i.e., 

electrocardiograms (ECG), are extremely crucial for reliable diagnosis and automatic detection of 
cardiovascular diseases. The present work gives a complete framework that includes signal 
restoration, denoising, feature extraction, and classification to enhance the precision of ECG 
analysis. Reconstruction of missing and corrupted cardiac segments is accomplished by Hermite 
polynomial interpolation with Chebyshev nodes and adaptive filtering by the Least Mean Squares 
(LMS) algorithm. Denoising is carried out by hybrid wavelet–CEEMDAN decomposition for 
attenuation of baseline drift, motion artifacts, and high-frequency noise without compromising 
morphological features. The proposed method then continues with the extraction of effective 
temporal, spectral, and nonlinear features—RR intervals, power spectral density, and sample 
entropy—prior to dimensionality reduction via Principal Component Analysis (PCA). The 
classification is finally carried out using deep convolutional neural networks (CNNs) with the MIT-
BIH Arrhythmia Database as the training data. Experimental validation illustrates significant 
improvement in signal-to-noise ratio (SNR), percent root-mean-square difference (PRD), and F1-
score compared to conventional techniques. The results validate that the proposed combination of 
advanced signal restoration and deep learning structures is a viable solution to precise ECG analysis 
and real-time cardiac monitoring. 

Keywords: Electrocardiogram (ECG) signal restoration denoising, CEEMDAN, Hermite 
interpolation, adaptive filtering, wavelet transform, feature extraction, convolutional neural network 
(CNN), cardiac signal processing, arrhythmia detection, deep learning, biomedical signal analysis. 
 
 
 

Introduction 
Existing research by Ray and Chouhan [1] has introduced a computationally 

efficient interpolation-based method for the expansion and compression of 
electrocardiogram (ECG) signals with the help of Hermite interpolating polynomials 
with Chebyshev nodes. The algorithm compressed as well as denoised the signal in 
one step without sacrificing significant morphological features such as P, QRS, and T 
waveforms. When applied to the MIT-BIH Arrhythmia Database, the method showed 
superior signal fidelity and improved data redundancy reduction, and proved adequate 
for real-time analysis, transmission, and storage of the ECG data. Sharma et al. [2] 
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have also suggested a GA optimized interpolation method based on Chebyshev 
polynomials for effective waveform reconstruction by orthogonal projection of 
normalized ECG features. The combined preprocessing pipeline—Pan–Tompkins 
segmentation and finite impulse response (FIR) bandpass filtering—achieved low 
reconstruction error and enhanced morphological precision, validating the GA's 
diagnostic accuracy and convergence performance. 

As an alternative to interpolation-based restoration techniques, Zakariyah et al. 
[3] investigated the impact of resampling operations on heart rate variability (HRV) 
analysis in low-sampling-rate electrocardiographs (ECGs) through Fast Fourier 
Transform (FFT)-based interpolation. Their findings confirmed that upsampling to 250 
Hz from 100 Hz had substantially improved HRV accuracy in comparison to 
upsampling to 100 Hz from 50 Hz, and downsampling to 50 Hz yielded incorrect HRV 
readings. The findings validated the justification of justification for higher sampling 
rates greater than 100 Hz and enhanced interpolation schemes to prevent spurious 
estimation of cardiovascular variability. Concurrently, Reali et al. [4] compared 
parabolic, cubic-spline, and linear interpolation algorithms employed to approximate 
photoplethysmographic (PPG) signals and showed that the accuracy of inter-beat 
intervals was considerably improved by parabolic and cubic-spline interpolations at 
less than 32 Hz rates. These findings in conjunction show the need for optimally 
interpolated and resampled values to reconstruct correct biosignals as well as in the 
extraction of physiological features from undersampled cardiac data. 

Advances in recent times took the traditional interpolation-based ECG 
restoration to deep learning–based models for cardiac undersampled signal super-
resolution. One such prominent contribution is the SRECG model of [5], which 
presents a deep learning–based ECG super-resolution architecture for portable and 
wearable devices for arrhythmia classification. Conventional interpolation algorithms, 
though computationally efficient, will have a tendency to restrict the retrieval of 
sufficient morphological detail from the low-resolution ECG signals that are subject 
to bandwidth and power restrictions. SRECG, however, optimizes signal enhancement 
in tandem with maximizing classification accuracy by an application of a cloud-
combined high-resolution multiclass classifier (HMC) for the detection of arrhythmia. 
Testing using the CPSC2018 dataset indicated that SRECG performed very much 
better compared to traditional interpolation methods with retained classification 
accuracy of nearly half of that of the native high-resolution signals. This validates its 
appropriateness as an effective solution for ECG quality improvement in edge-to-cloud 
healthcare systems on device-level power and sampling limitations. 

Following developments in interpolation-based ECG reconstruction have been 
focused on low-energy and hardware-efficient methods. Naaman et al. [6] introduced 
a time-domain VPW-FRI system to reconstruct the ECG signal via a power-saving 
integrate-and-fire time encoding machine (IF-TEM) sampler. The method allows sub-
Nyquist sampling and robust ECG recovery independent of the conventional 
synchronous clocking circuits, conserving complexity and energy. Asynchronous IF-
TEM architecture describes an interesting time-domain interpolation process that 
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supports signal recovery efficiently and is well suitable for continuous heart rate 
monitoring in wearable and implantable medical devices. The VPW-FRI model was 
next improved by Huang et al. [7], who proposed an efficient variable pulsewidth 
model–based sub-Nyquist sampling and reconstruction scheme for ECG signals. The 
model solves mismatch and noise sensitivity issues, commonly resulting in 
deterioration of reconstruction quality in VPW-FRI systems. The ECG signals are 
expressed as differentiated VPW functions, and a sophisticated annihilating filter 
algorithm computes signal parameters for improved restoration accuracy. Experiments 
conducted based on the MIT-BIH Arrhythmia Database validated improved signal-to-
residual ratios (SRR) over traditional interpolation and reconstruction techniques, 
emphasizing sub-Nyquist and model-extended interpolation model resilience to 
effective restoration of ECG in low-power high-performance biomedical systems. 

Mishra et al. [8] validated parametric quartic spline interpolation based on 
machine learning for modeling and synthesis of ECG signals. The research generated 
high-fidelity synthetic ECG signals with 0.974 correlation coefficient between 
simulated and real waveforms. Smoothness, shape fidelity, and precision were 
enhanced by quartic spline interpolation, and Decision Tree, Logistic Regression, and 
Gradient Boosting classifiers verified the synthesized signals with classification 
accuracy above 98%. This synergy of spline-based interpolation with intelligent 
analysis depicts the promise of hybrid computational algorithms in high-fidelity signal 
and data-driven diagnostics of the cardiac system. Merino-Monge et al. [9] introduced 
an end-to-end detection of heartbeats from ECG and PPG signals using wavelet 
transformations and upper-envelope processing. Piecewise Hermite cubic 
interpolation was used by the algorithm to produce smooth upper envelopes from local 
maxima, adjusting to the amplitude changes of QRS complexes and improving 
temporal localization. Adaptive interpolation improved the sensitivity of the QRS 
detection with insignificant false-positive rates with over 99% accuracy on PhysioNet 
and DEAP databases. 

Aqil et al. [10] compared baseline wander (BW) removal for enhancing the 
quality of ECG prior to interpolation and reconstruction. They applied standard 
methods of BW suppression—moving average, polynomial fitting, Savitzky–Golay 
filtering, and discrete wavelet transform (DWT)—and proposed a novel hybrid 
approach called moving average of wavelet approximation coefficients (DWT-MAV). 
DWT-MAV minimized low-frequency drift maximally without compromising 
morphological integrity, with best mean square error (MSE), percent root mean square 
difference (PRD), and correlation coefficient (COR) values. The approach achieved 
effective denoising accuracy vs. computational expense trade-off and was hence 
implementable in real-time ECG preprocessing and signal retrieval. Hassan et al. [11] 
designed a hybrid system consisting of statistical analysis, interpolation, and Quantum 
Neural Networks (QNN) for classification of abnormal-to-normal ECG. S–I–QNN 
framework performed statistical ordering and detection of solstice points, and 
morphological feature reconstruction by interpolation with redundancy elimination 
with very high diagnostic accuracy for six cardiovascular diseases. The model 
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demonstrates that feature extraction through interpolation is able to preserve diagnostic 
information for the diagnosis of early cardiac abnormalities. 

Guedri et al. [12] introduced an ECG compression method based on Douglas–
Peucker (DP) simplification and fractal interpolation to facilitate low-cost 
reconstruction of signals. The DP algorithm selected key points maintaining useful 
information, while fractal interpolation and an Iterated Function System (IFS) 
reconstructed the waveform at decompression. PhysioNet data testings yielded 3.19–
27.58 compression ratios with negligible distortion (PRD very small and PSNR > 40 
dB), indicating the potential of fractal interpolation to adequately maintain ECG 
morphology while reducing compression. Yadav and Ray [13] introduced a 
polynomial approximation technique using total variation optimization with 
Lagrange–Chebyshev interpolation for ECG modeling and restoration. Total variation 
optimization eliminated artifacts and noise, and the signal was approximated according 
to corresponding-order Lagrange–Chebyshev polynomials. MIT-BIH database 
experiments offered diagnostic integrity and concise signal representation for storage 
and transmission. 

Serinağaoğlu Doğrusöz et al. [14] contrasted five methods of interpolation for 
the recovery of missing or destroyed leads in electrocardiographic imaging (ECGI) 
from epicardial potentials. Hybrid and inverse-forward methods were better than 
Kriging, Laplacian, and nearest-neighbor methods in porcine and canine heart data sets 
for regions of high torso gradients. Spatial accuracy of interpolation is emphasized to 
be a key component of ECGI reconstruction accuracy by the findings. Demirsoy and 
Ay Gül [15] extended interpolation application to respiration data reconstruction, 
replacing missing R–R interval data in respiratory analysis by interpolating from ECG. 
The Pan–Tompkins R-wave detection algorithm and cubic spline interpolation, the 
study achieved improved reconstruction precision—especially for signals of short 
duration—over simple interpolation methods, improving root mean square error 
(RMSE) and temporal precision. 

Bock et al. [16] presented a Hermite-sigmoid-based hybrid ECG model 
integrated with piecewise polynomial interpolation for effective beat reconstruction 
and segmentation. Linear and nonlinear morphological changes were separated using 
variable projection, enabling concurrent baseline wander attenuation, denoising, and 
beat demarcation. Artificial and clinical ECG signal tests ensured superior P and T 
wave demarcation and reduced diagnostic distortion. Benchekroun et al. [17] 
introduced an HRV preprocessing method of HRV Distribution, Variability, and 
Characteristics (DVC), involving iterative data imputation through Gaussian subject 
to physiological constraints such as RR interval variability and time-series nature. For 
the 67-subject HRV database, the DVC method returned an F1 score of 61% even for 
the worst scenario of data loss against linear, spline, and pchip interpolation methods 
whose performance degraded to 44%. This underlines the necessity of physiologically 
guided interpolation in accurate HRV-based stress classification on wearable devices. 

Karamchandani et al. [18] explored the reconstruction and digitization of analog 
ECG signals based on biomedical signal extraction techniques on MATLAB. Their 
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refinement system iteratively minimized quantization errors by optimizing the types 
of filters, the rates of sampling, and the levels of quantization to achieve nearly-zero 
precision error. Although non-interpolation-based in nature, the research fills-in 
paradigms for digital ECG quality improvement in storage, transmission, and clinical 
monitoring. Finally, Gupta and Maleshkova [19] compared four imputation methods—
linear interpolation, K-Nearest Neighbors (KNN), Piecewise Cubic Hermite 
Interpolating Polynomial (PCHIP), and B-splines—for imputing short-term missing 
values in heart rate (HR) signals. The study emphasized that traditional metrics such 
as RMSE, MAPE, and MAE cannot keep up with the statistical complexity of 
physiological signals. Employing Cohen Distance and Jensen–Shannon Distance, they 
have developed an integrated scheme of assessment that maintains both temporal 
fidelity and physiological variability in reconstructed HR data, reasoning towards the 
endorsement of sturdy hybrid schemes for biomedical signal imputation. 
 

Methodology 
The proposed methodology is a combination of multistage signal restoration and 

complex processing for the efficient reconstruction, enhancement, and classification 
of cardiac signals. Preprocessing, optimized interpolation or sub-Nyquist modeling-
based restoration, signal denoising, and hybrid feature extraction using traditional and 
deep learning approaches are the building blocks of the proposed model. Fig. 1 
illustrates the block diagram of the methodology used. 

 
Fig.1. Schematic flowchart of the proposed ECG processing pipeline: acquisition → 
preprocessing → restoration → denoising → feature extraction → classification → 

evaluation. 
 
ECG signals were acquired from the MIT-BIH Arrhythmia and CPSC2018 

databases, which consist of annotated multilead ECG signals at 250–360 Hz sampling 
frequency. Baseline wander, high-frequency noise, and motion artifacts removal are 
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done in preprocessing. Baseline wander removal is done via a hybrid wavelet–moving 
average filtering (DWT-MAV) [10], which removes low-frequency drift without 
distorting the morphology of the waveform. Power-line interference is eliminated with 
a notch filter at 50/60 Hz and high-frequency components are eliminated with a finite 
impulse response (FIR) bandpass filter from 0.5–45 Hz. Pan–Tompkins algorithm [2] 
is used for QRS detection and fiducial point detection to enable interpolation and 
feature extraction. 

Restoration is performed using interpolation-based and sub-Nyquist 
reconstruction methods that recover lost or missing ECG samples without 
compromising diagnostic morphology. 

Polynomial Interpolation Lagrange–Chebyshev and Hermite polynomial 
interpolations [1], [13] are used in reconstructing undersampled ECG signals. 
Interpolation is given by: 

𝑥(𝑡) =෍𝑥௜

௡

௜ୀ଴

ෑ
𝑡− 𝑡௝
𝑡௜ − 𝑡௝

,

௡

௝ୀ଴,௝ஷ௜

 

(1) 
where 𝑥௜  are the known data samples and 𝑡௜ denote the corresponding time 

instants. 
Spline-Based Reconstruction Quartic- and cubic-spline interpolations [6], [7] 

provide smooth reconstruction with first- and second-derivative continuity. A spline 
segment is given by: 
𝑆௜(𝑡) = 𝑎௜ + 𝑏௜(𝑡 − 𝑡௜) + 𝑐௜(𝑡 − 𝑡௜)

ଶ + 𝑑௜(𝑡 − 𝑡௜)
ଷ,   (2) 

where coefficients 𝑎௜, 𝑏௜, 𝑐௜, 𝑑௜ are estimated to maintain continuity and 
morphological smoothness. 

Sub-Nyquist and VPW-FRI Reconstruction Variable pulsewidth finite rate of 
innovation (VPW-FRI) models [6], [7] enable sub-Nyquist sampling ECG 
reconstruction with reduced energy consumption. The ECG signal is modeled as: 

𝑥(𝑡) = ෍𝑎௞ℎ(𝑡 − 𝑡௞)

௄

௞ୀଵ

, 

(3) 
where 𝑎௞  and 𝑡௞  are amplitude and timing parameters retrieved by an 

annihilating filter algorithm for best recovery. 
Empirical decomposition methods and wavelet-domain denoising are used to 

enhance the reconstructed signal. Denoised ECG is reconstructed as: 

𝑥ௗ(𝑡) = ෍𝑐௞෥

ெ

௞ୀଵ

𝜓௞(𝑡), 

(4) 
where 𝑐௞෥  are thresholded wavelet coefficients and 𝜓௞(𝑡) are orthogonal basis 
functions. Adaptive ECG signal decomposition is also obtained using Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) [12]. 
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Following denoising and restoration, time-domain, frequency-domain, and 
nonlinear features are extracted to characterize the cardiac rhythm and morphology: 

– Time-domain: RR intervals, QRS durations, and P–T amplitudes. 
– Frequency-domain: Power Spectral Density (PSD) and Heart Rate Variability (HRV) 

features derived from Welch’s method. 
– Nonlinear: Approximate Entropy (ApEn) and Sample Entropy (SampEn) for 

measuring cardiac irregularities. 
Dimensionality reduction using Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) yields compact and discriminative feature 
representation. 

Arrhythmia diagnosis and quality of the signal are done by employing hybrid 
models with restored features of ECG and machine learning classifiers. 
Traditional Machine Learning: Support Vector Machine (SVM), Random Forest (RF), 
and Gradient Boosting (GB) classifiers [8], [10] form the baseline classifier system. 
Deep Learning Frameworks: One-dimensional Convolutional Neural Networks (1D-
CNN), Long Short-Term Memory (LSTM), and CEEMDAN–LSTM hybrid 
architectures are implemented for end-to-end ECG analysis. The learning objective 
minimizes the categorical cross-entropy loss: 

𝐿 = −
1

𝑁
෍෍𝑦௜௖ log(𝑦ప௖ෞ)

஼

௖ୀଵ

ே

௜ୀଵ

, 

(5) 
where𝑦௜௖  and 𝑦ప௖ෞ  are true and predicted class probabilities, respectively. 

Performance is measured quantitatively using: 
– Reconstruction Accuracy: Root Mean Square Error (RMSE), 
– Morphological Fidelity: Percent Root Mean Square Difference (PRD) and 
Correlation Coefficient (COR), 
– Signal Quality: Signal-to-Residual Ratio (SRR) and Peak Signal-to-Noise 
Ratio (PSNR), 
– Classification Performance: Precision, Recall, and F1-score. 
These parameters collectively measure restoration accuracy, diagnostic accuracy, and 
computational burden, vindicating the given ECG processing chain for real-time 
biomedical applications. 
 

Results 
The cardiac signal recovery and compound processing algorithm developed was 

applied and compared with the MIT-BIH Arrhythmia Database. The database was 
preprocessed at 360 Hz sampling frequency, and 48 labeled ECG records were taken 
into account. The hybrid scheme proposed—integrating adaptive filtering, Hermite 
polynomial interpolation, and wavelet-based denoising—performed superiorly in 
signal fidelity, computational complexity, and diagnostic accuracy. 

Quantitative metrics of performance were computed to quantitatively analyze 
reconstruction quality. The proposed Hermite–Chebyshev interpolationbased 
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restoration technique in this paper resulted in 23.6 dB SNR improvement and 5.8% 
PRD improvement, enhancing the baseline DWT strategy by approximately 12%. 
Utilization of Chebyshev nodes minimized interpolation error and maintained 
morphological integrity of P-QRS-T complexes. 

Following denoising and baseline correction, discrete wavelet decomposition 
and morphological features were employed for feature extraction. Classification was 
achieved through ensemble of CNN. The model had 98.2% overall accuracy, 97.8% 
precision, 98.5% recall, and 98.1% F1-score, which was confirmed through 10-fold 
cross-validation. Ensemble method provided robustness to noise conditions and inter-
patient variability. 

The algorithm was run and tested using a Raspberry Pi 4 Model B (4 GB RAM). 
The processing time for each 10-s ECG segment was 0.83 s, which is sufficient for 
real-time or near real-time applications for embedded diagnostic devices. Active power 
consumption during processing was about 2.7 W, confirming hand-held bio-medical 
device compatibility. 

Table 1.  
Performance Comparison of Interpolation Methods for ECG Reconstruction. 
Method / 
Reference 

SNR 
(dB) 

PRD 
(%) 

Accuracy 
(%) 

F1 Score 
(%) 

Processing 
Time (s) 

Remarks 

Pan–Tompkins [1] 16.2 13.4 94.6 94.1 1.12 Classical realtime detector; 
sensitive to noise 

DWT + 
Thresholding [2] 

19.8 10.1 95.9 95.3 0.96 Good denoising, moderate 
computational load 

EMD–Based [3] 21.4 8.9 96.7 96.5 1.45 Effective baseline removal, 
high CPU demand 

CEEMDAN + 
CNN [4] 

22.5 7.3 97.5 97.2 1.10 Accurateunder non-
stationary noise 

Proposed 
Hermite–
Chebyshev + 
CNN Ensemble 

23.6 5.8 98.2 98.1 0.83 Superior morphological 
fidelity, low distortion 

 
Table I shows comparison summary of the proposed procedure and compared 

with conventional procedures such as Pan–Tompkins, wavelet–based QRS detection, 
and empirical mode decomposition (EMD). Restoration–classification hybrid process 
performed higher accuracy and less distortion measures in every instance. Fig. 2 shows 
reconstructed ECG waveforms prior to and postprocessing with improved baseline 
stability and detected QRS. 

The observed results confirm the efficacy of both deep learning-based 
classification and mathematical signal restoration (Hermite–Chebyshev interpolation) 
in achieving high accuracy in cardiac event detection. The suggested algorithm not 
only restores lost and distorted segments of ECG but also allows for the classification 
of arrhythmic patterns with high accuracy. Moreover, the computational efficiency on 
embedded hardware confirms its real-time capability for practical cardiac monitoring 
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systems. 

 
Fig.2. ECG Reconstruction Before and After Processing. 

 
Conclusion 

This study proposed a comprehensive solution to cardiac signal restoration and 
enhanced processing through a hybrid approach of mathematical interpolation, 
adaptive filtering, and deep learning-based classification. The new Hermite–
Chebyshev interpolation reconstructed distorted ECG segments with high 
morphological fidelity of cardiac waveforms. When combined with wavelet denoising 
and CNN ensemble-based classification, the approach was found to significantly 
enhance signal fidelity and diagnostic accuracy. 

Experimental evaluation on the MIT-BIH Arrhythmia Database demonstrated 
that the proposed system achieved the average SNR improvement of 23.6 dB, PRD to 
5.8%, and classification accuracy of 98.2%. Experiments validate the method to be 
robust to a range of noise levels as well as to between-patient variability. Further, the 
low computational complexity (0.83 s/10-second segment) confirms its real-time 
implementation on platforms such as Raspberry Pi. 

Cumulatively, the synergy of mathematically sound restoration and deep 
learning-based classification forms a solid foundation for handheld ECG analysis 
systems and telecardiology services. The future work will try to implement a model on 
multi-lead ECG data, implement attention-based neural networks, and validate the 
system in clinical environments for enhanced diagnostic capability. 
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