www.innoist.uz

DOI: https://doi.org/10.5281/zenodo.17399386

ПРОГНОЗИРОВАНИЕ ИНДЕКСА Z ГЕОМАГНИТНОЙ АКТИВНОСТИ НА ОСНОВЕ ВЛИЯНИЯ СИЛ ГРАВИТАЦИИ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

Назаров Алишер Искендерович

доцент, кафедра «Компьютерные системы» Ташкентский университет информационных технологий имени Мухаммада ал-Хоразмий alisher.nazarov.1958@mail.ru +998973434519

Аннотация - Прикладным исследованиям по влиянию геомагнитной активности на радиосвязь посвящены работы ученых во всем мире. В мировой практике проводятся исследования по разработке алгоритмов интенсивные прикладные прогнозирования индексов геомагнитной активности, с помощью которых оценивается степень воздействия магнитных бурь на устойчивость радиосвязи.

В данной статье проведена разработка модели и алгоритма прогноза индекса Z геомагнитной активности без процедур экстраполяции для оценки состояния магнитосферы на основе влияния сил гравитации планет солнечной системы.

Ключевые слова: силы гравитации, геомагнитная активность, корреляция, регрессия, модель прогноза, адекватность

І. ВВЕДЕНИЕ

Одно из важных исследований, связанных с возмущением магнитосферы Земли при воздействии солнечного ветра, это оценка ее состояния с помощью индексов геомагнитной активности (ГМА)²³. Прикладной характер геомагнитных исследований связан с прогнозированием электромагнитного состояния околоземной среды с целью уменьшения негативного воздействия солнечного ветра на работу спутниковых и наземных радиотехнических систем, а также Интенсивность солнечного излучения (числа железнодорожной автоматики. Вольфа) влияет на возмущение магнитосферы Земли, которое оценивается с помощью локального индекса К трехчасового разрешения, регистрируемый выбранной обсерватории.

На сегодняшний день отсутствует единая теория предсказания индексов ГМА, т.к. они, как правило, испытывают циклические и случайные колебания, которые ведут к непостоянству их средних величин за большие интервалы времени. Поэтому методы прогнозирования порой являются чисто эмпирико-

²³ Амиантов А. С., Зайцев А. Н., Одинцов В. И., Петров В. Г. Вариации магнитного поля Земли. М., 2001.

статистическими, опирающимися исключительно на всевозможные статистические связи между различными характеристиками ГМА.

В последнее время увеличивается количество работ посвященных исследованию влияния сил гравитации на природные процессы Земли.

В частности, отмечено:

- 1. Объяснение механизма пятнообразования на Солнце и приливного параметра невозмущенного воздействия планет на Солнце, может иметь непосредственное динамическое обоснование, что позволяет прогнозировать параметры новых солнечных циклов по результатам исследований приливных воздействий планет.
- 2. Корректное, в отличие от приближенной классической схемы "парных взаимодействий" Лапласа, выявление роли динамического воздействия планет в вариациях солнечного цикла позволяет предположить, что механизм, индуцирующий процесс пятнообразования на Солнце может быть обусловлен динамическим воздействием на солнечную атмосферу планет солнечной системы²⁴.

Для определения геомагнитного возмущения используется геомагнитный эффект, который состоит в том, что на станциях в полярных областях наблюдаются суточные геомагнитные вариации в данные сутки. Наиболее ярко эта зависимость выражена в вертикальной компоненте (**Z**) геомагнитного поля на высокоширотных станциях в летний сезон в околополуденные часы по местному геомагнитному времени. В связи с этим представляется актуальным исследование вертикальной компоненте **Z**, одной из составляющей локального геомагнитного индекса К, на основе влияния сил гравитации планет солнечной системы.

В данной статье предлагается способ построения прогностической модели прогноза индекса Z, основанной на использовании гравитационных сил планет солнечной системы без процедур экстраполяции.

Постановка задачи

Для повышения точности математического моделирования является важным проведение предварительной обработки исходных статистических данных:

- 1. Восстановление пропущенных данных и медианная обработка.
- 2. Определение корреляционных связей по критерию Пирсона.
- 3. Расчет результирующей силы гравитации планет солнечной системы и их проекций.
- 4. Построение прогностических математических моделей и выбор из них наилучшей.
 - 5. Интерпретация полученных результатов.

²⁴ Константиновская Л.В. Положение планет и долгосрочное прогнозирование. — Математические методы анализа цикличности в геологии, вып.6, РАЕН, М., 1994, с.113–117.

II. МАТЕРИАЛ И МЕТОДЫ

Индекс Z зависят от степени возмущения магнитосферы Земли солнечным ветром, который зависит от многих факторов, в частности, условно можно разбить на следующие категории: место наблюдения Мі, время t, изменяемое в течение суток, дата (Время года), гравитационные силы.

Таким образом, необходимо производить построение регрессионного уравнения в виде:

$$Z = f(M(i), t, Data, F(k))$$
(1)

В этом случае, математическая модель прогноза индекса Z будет зависеть от факторов, которые меняются во времени и пространстве.

Для получения однородности предлагается способ, изложенный в работе²⁵, перечисленные категории имеют фиксированные позиции по координатам геомагнитной станции наблюдения, году, дате и часу наблюдения. Получим постоянные значения выше перечисленных параметров в фиксированных позициях.

Это приведет к однородности исходного массива данных. В результате получим уравнение вида:

$$Kp = f(F(k))$$
 (2)

Использование этого способа позволяет параметры категорий «Время», «Дата» перевести в разряд констант и повышается однородность исходной выборки данных, но построение прогностической модели индекса Z будет выполнена для каждого момента времени, дня и года в отдельности на основе гравитационных сил планет солнечной системы.

Гравитационные силы. Известно что, приливообразующий потенциал есть результат суммарного воздействия волн различной длины.

Долгопериодная (зональная) волна

Вертикальное
$$F_w^d = D(c/r)^3 \Big[3 \Big(\sin^2 \phi - 1/3 \Big) \Big(\sin^2 \delta - 1/3 \Big) \Big]$$
 меридианное $F_m^d = D(c/r)^3 \Big[-3 \sin 2\phi \Big(\sin^2 \delta - 1/3 \Big) \Big]$ параллельное $F_p^d = 0$ Суточная (тессеральная) волна вертикальное $F_w^s = D(c/r)^3 \Big[\sin 2\phi \sin 2\delta \cos H \Big]$ меридианное $F_m^s = D(c/r)^3 \Big[-2 \cos 2\phi \sin 2\delta \cos H \Big]$

 $^{^{25}}$ Назаров А.И. Прогнозирование чисел Вольфа без процедур экстраполяции.

[&]quot;Innovations in Science and Technologies" scientific electronic journal ISSN: 3030-3451 www.innoist.uz. Volume 1 6 OCTOBER, 2024.

```
www.innoist.uz
```

```
параллельное F_p^s = D(c/r)^3 [2 \sin \phi \sin 2\delta \sin H]
                          Полусуточная (секториальная) волна
вертикальное F_w^p = D(c/r)^3 \left[\cos^2\phi \cos^2\delta \cos 2H\right]
меридианное F_m^p = D(c/r)^3 \sin 2\phi \cos^2 \delta \cos 2H
параллельное F_p^p = D(c/r)^3 \left[ 2 \cos \phi \cos^2 \delta \sin 2H \right]
где: F_R^A - верхний индекс A означает тип волны: d – долгопериодная; s –
суточная; p — полусуточная; а нижний индекс B означает проекцию w — на
вертикаль; m — на меридиан; p — на параллель.
D' = 0.46051 D - постоянная Дудсона для Солнца.
D = 26277 \text{ cm}^2 / cek^2 - постоянная Дудсона для Луны.
         Расчет постоянной Дудсона для планет производится по формуле:
                                   D = 3mg_1a_1^2(a_1 + r_0)^2/4c^3
где: g_1 = 982,04 cm/cek<sup>2</sup> - ускорение свободного падения;
a_1 = 6378160 \text{ m} - средний радиус Земли;
r_0 - высота над уровнем моря места наблюдения;
c = 60,27a_1;
m = m_{ob} / m_z - отношение массы объекта к массе Земли;
для Меркурия: m = 0.005; для Венеры: m = 0.816; для Марса: m = 0.107;
для Юпитера: m = 318; для Сатурна: m = 95,1; для Урана: m = 14,6;
для Нептуна: m = 17.2; c/r - радиус — вектор
      Радиус – вектор Земля – Солнце определяется формулой:
      c/r = 1 + 0.0167301 \cos(h - p_s) + 0.000281 \sin 2(h - p_s) + 0.000005 \sin 3(h - p_s)
         Радиус – вектор Земля - Небесное тело определяется формулой:
           (Луна, Меркурий, Венера, Марс, Юпитер, Сатурн, Уран, Нептун)
     c/r = 1 + 0.055\cos(s - p) + 0.010\cos(s - 2h + p) + 0.008\cos(2s - 2h) + 0.003\cos(2s - 2p)
\phi - географическая широта места наблюдения на Земле
      Склонение Солнца определяется формулой:
                           \sin \delta = 0.406 \sin \alpha + 0.003 \sin 3\alpha
где: восхождение для Солнца \alpha = h - 0.0435 \sin 2h
      Склонение Небесного тела определяется формулой:
      \sin \delta = 0.406 \sin \alpha + 0.008 \sin 3\alpha + 0.090 \sin(\alpha - N) + 0.006 \sin(3\alpha - N)
      Восхождение для Небесного тела определяется формулой:
              \alpha = s - 0.043 \sin 2s + 0.019 \sin N - 0.019 \sin(2s - N)
     H = a\tau + bs + ch + dp + eN' + fp_s - определяет вид функции из таблиц
     где: h - средняя долгота Солнца определяется формулой:
              h = 279,69668^{\circ} + 36000,76892^{\circ} * T + 0,00030^{\circ} * T^{2}
s - средняя долгота Небесного тела
```

ДЛЯ Луны $s = 270,43659^{0} + 481267,89057^{0} * T + 0,00198^{0} * T^{2} + 0,000002^{0} * T^{3}$

www.innoist.uz

```
для Меркурия s = 908103,26^{\circ} + 538106660,097^{\circ} * T + 1,0943^{\circ} * T^{2} + 0,0001^{\circ} * T^{3}
для Венеры s = 655127,283^{\circ} + 210669166,909^{\circ} * T + 1,1182^{\circ} * T^{2} + 0,0001^{\circ} * T^{3}
для Mapca s = 1279559,789^{\circ} + 68910107,309^{\circ} * T + 1,1195^{\circ} * T^{2} + 0,0001^{\circ} * T^{3}
для Юпитера s = 123665,342^{\circ} + 10930690,04^{\circ} * T + 0,8055^{\circ} * T^{2} + 0,0159^{\circ} * T^{3}
для Сатурна s = 180278,897^{\circ} + 4404639,651^{\circ} * T + 1,8703^{\circ} * T^{2}
ДЛЯ Урана s = 1130598,018^{\circ} + 1547510,602^{\circ} * T + 1,0956^{\circ} * T^{2} + 0,0001^{\circ} * T^{3}
для Нептуна s = 1095655,196^{\circ} + 791579,913^{\circ} * T + 1,1133^{\circ} * T^{2} + 0,0001^{\circ} * T^{3}
 p_s - долгота перигея Солнца
p_s = 281,22083^{\circ} + 1,71902^{\circ} * T + 0,00045^{\circ} * T^2 + 0,000003^{\circ} * T^3
р - долгота перигея Небесного тела
ДЛЯ \sqrt{1} Луны p = 334,32956^{\circ} + 4069,03403^{\circ} * T - 0,01032^{\circ} * T^2 - 0,00001 * T^3
для Меркурия p = 278842,029^{\circ} + 5603,318^{\circ} * T + 1,0652^{\circ} * T^{2} + 0,0002 * T^{3}
Для Венеры p = 473629,346^{\circ} + 5047,994^{\circ} * T - 3,8618^{\circ} * T^2 - 0,0189 * T^3
ДЛЯ Mapca p = 1209816,842^{0} + 6627,759^{0} * T + 0,4864^{0} * T^{2} + 0,001 * T^{3}
для Юпитера p = 51592,713^{\circ} + 5805,497^{\circ} * T + 3,7132^{\circ} * T^2 - 0,0159 * T^3
для Сатурна p = 335004,434^{\circ} + 7069,538^{\circ} * T + 3,015^{\circ} * T^{2} + 0,0181 * T^{3}
для Урана p = 622818,573^{\circ} + 5350,965^{\circ} * T + 0,7722^{\circ} * T^2 + 0,0015 * T^3
для Нептуна p = 1095655,196^{\circ} + 791579,913^{\circ} * T + 1,1133^{\circ} * T^{2} + 0,0001 * T^{3}
N = -N' - долгота восходящего узла Небесного тела
для Луны: N = 259,18328^{\circ} - 1934,14201^{\circ} * T + 0,00208^{\circ} * T^{2} + 0,000002 * T^{3}
для Меркурия: N = 173991,215^{\circ} + 4270,279^{\circ} * T + 0,6332^{\circ} * T^{2} + 0,0008 * T^{3}
для Венеры: N = 276047,713^{0} + 3244,033^{0} * T + 1,4639^{0} * T^{2} - 0,0003 * T^{3}
для Mapca: N = 178409,136^{\circ} + 2779,544^{\circ} * T + 0,0578^{\circ} * T^{2} + 0,0082 * T^{3}
для Юпитера: N = 361671,986^{\circ} + 3675,433^{\circ} * T + 1,4440^{\circ} * T^2 + 0,0021 * T^3
для Сатурна: N = 409195,885^{\circ} + 3157,539^{\circ} * T - 0,4347^{\circ} * T^2 - 0,0084 * T^3
для Урана: N = 266421,41^{\circ} + 1876,056^{\circ} * T + 4,8236^{\circ} * T^{2} + 0,0666 * T^{3}
для Нептуна: N = 474422,605^{\circ} + 3967,929^{\circ} * T + 0,9359^{\circ} * T^2 - 0,0022 * T^3
                                                   \tau = 360^{\circ} * T - (s - h) + 180^{\circ}
	au - указывает на тип волны
         T – время, выраженное в юлианских столетиях (первый юлианский год
```

соответствует 4713 году до н.э.) $T = (T_j - T_{j0}) / 36525$

 T_{j} – число суток, прошедших за период с 1 юлианского года до года исследования.

 T_{i0} — число суток, прошедших за период с первого юлианского года до 1 юлианского января 1899 года.

Параметр Н – определяет вид функции. Можно произвести полное и чисто гармоническое разложение этой функции по сферическим гармоникам.

Такое разложение впервые произвел А.Т. Дудсон в 1921 г. Разложение Дудсона содержит 386 волн. В 1971 г. Д. К. Картрайтом опубликовано более полное разложение приливного потенциала, содержащее 550 волн²⁶. Каждая из 550 волн может быть рассмотрена в проекциях на параллель, меридиан и вертикаль в их кинематических характеристиках смещение, скорость и ускорение. В общей сложности в рассмотрение может быть включено 44550 характеристик (7 планет, Луна, Солнце * 3 проекции* 3 кинематические характеристики* 550 волн), которые и были использованы в качестве

Предварительная обработка. Вследствие того, что точность статистических оценок и адекватность математических моделей во многом определяется качеством исходных данных, была выполнена следующая предварительная обработка статистических данных:

- заполнение пробелов в таблице данных методом восстановления при помощи кубического сплайна;
 - медианная предобработка экспериментальных данных;

независимых переменных для построения моделей прогноза.

При организации робастной процедуры построения эмпирической линии регрессии с последующей параметрической идентификацией МНК приняты медианы вариационных рядов 5 оценок абсцисс и ординат.

В соответствии с медианной оценкой для упорядоченной выборки значений каждого входного параметра $x_{j1} < x_{j2} < ... < x_{jN}; j = \overline{1,k}$ определяется число классов по правилу Старджеса $L = \left]1 + 3,322 \, \lg N \right[$, где $\right] \left[$ знак округления в сторону ближайшего большего целого.

Применительно к каждому i-му выходному параметру внешней среды в каждом классе определяются медианы центров с координатами (x_{jl}^*, y_{ijl}^*) , $l = \overline{1,L}$, как медианы вариационных рядов пяти оценок абсцисс $\overline{x_{il}}, x_{il}^c, x_{il}^m, \overline{x_{il}^{0,5}}$ и орди-

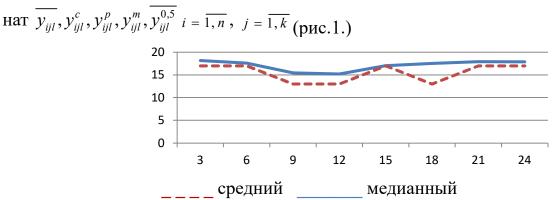


Рис.1. Медианная предобработка данных по индексу Z

Прогностическое моделирование. Построение моделей прогноза производилось при помощи метода наименьших квадратов в виде регрессионных уравнений. При этом использовались только те характеристики

-

²⁶ Cartwright D.E., Tayler R.I. New Computations of the Tide–generating Potential. Geophys. J. Roy. Astron. Soc., 23, 45–47 (1971).

www.innoist.uz

приливообразующего потенциала с достоверной корреляционной связью со значениями индекса Z (p<0,05).

В нашем случае из кинематических характеристик в рассмотрение были включено только смещение (14850 характеристик). Чтобы исключить нарушение предположений о ранге МНК гравитационные волны были объединены в 6 групп в зависимости от проекции на меридиан (mer), параллель (par) и вертикаль (wer) результирующей гравитационной силы и характера корреляционной связи с Z (r>0, r<0): S1 (mer, r+1), S2 (mer, r-1), S3 (par, r+1), S4 (par, r-1), S5 (ver, r-1), S6 (ver, r-1).

Исходный массив индекса Z трехчасового разрешения был взят из интернет—источника Мирового Центра Данных по солнечно—земной физике: https://wdc.kugi.kyoto-u.ac.jp/index.html), за период 1938 – 1987 годы.

Общее количество замеров - 17824, получено 384 прогностических моделей вертикальной компоненты магнитного поля Z.

Прогнозирующие правила индекса Z строились в виде простой регрессии от каждой из этих сумм. За окончательный результат принималась средне—арифметическая значений простых регрессий.

Приведена модель прогноза индекса Z на 1 января 15.00:

```
Z1 = 45347,3379 + 15,4631 * Fp^{Mer+}

Z2 = 51729,7532 - 26,5472 * Fp^{Mer-}

Z3 = 45803,4272 + 20,1164 * Fp^{par+}

Z4 = 48770,71664 - 13,9281 * Fp^{par-}

Z5 = 49410,53581 + 7,11973 * Fp^{wer+}

Z6 = 47988,16939 - 7,8222436 * Fp^{wer-}

Zcp. = (Z1+Z2+Z3+Z4+Z5+Z6)/6 (3)
```

где: $\mathrm{Fp^{Mer^+}}$ – меридианный результирующий потенциал, имеющий положительное корреляционное воздействие на индекс Z ;

 ${\rm Fp^{{\scriptscriptstyle Mer}}}-$ меридианный результирующий потенциал, имеющий отрицательное корреляционное воздействие на индекс Z;

 ${\rm Fp^{par^+}}$ — параллельный результирующий потенциал, имеющий положительное корреляционное воздействие на индекс ${\rm Z};$

 ${\rm Fp}^{{\rm par}\,{}^-}-{\rm параллельный результирующий потенциал, имеющий отрицательное корреляционное воздействие на индекс <math>Z$;

Fp^{wer+} – вертикальный результирующий потенциал, имеющий положительное корреляционное воздействие на индекс Z;

Fp^{wer}— вертикальный результирующий потенциал, имеющий отрицательное корреляционное воздействие на индекс Z.

В зависимости от значения индекса Z как часть индекса К производится выбор частоты передачи сигнала, обеспечивающая устойчивость радиосвязи.

О степени соответствия прогностических моделей исходным статистическим данным Z можно судить по рис. 2.

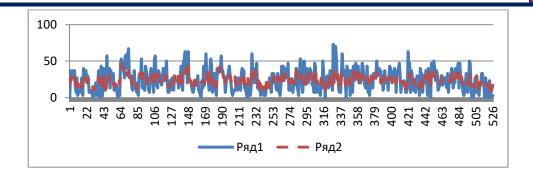


Рис.2. Графики значений индекса Z и его отклонение от реальных значений

Таблица 1. Оценка адекватности регрессионных моделей до и после медианной предобработки индекса Z

Модель	σ	R^2	F	p
Оценка индекса Z до медианной предобработки данных	±0,110	0,867	62,97	> 99,95
Оценка индекса Z после медианной предобработки данных	±0,102	0,999	64,07	> 99,95

Символьные обозначения: σ — статистическая ошибка; R — коэффициент детерминации; F — коэффициент Фишера; p — уровень достоверного различия.

Проверка адекватности регрессионных моделей прогноза показало, что повышение F-отношения и увеличение коэффициента детерминации при сравнимых статистических ошибках, свидетельствуют о повышении уровня адекватности регрессионных моделей, построенных на выборке, подвергшейся предварительной обработке.

Далее полученные результаты расчетов анализируются и на основе общепринятых градаций 27 вырабатываются рекомендации.

В зависимости от значений индекса Z прогнозируется уровень магнитной бури, на объекте управления производится выбор частоты передачи сигнала, которая обеспечивает устойчивость радиосвязи.

Преимуществами предлагаемого подхода прогнозирования является отсутствие процедур экстраполяции, т.е. точность прогноза индексов Z не зависит от срока прогнозирования.

IV. ВЫВОДЫ

Результаты проведенного исследования позволяют сделать следующие выводы:

 $^{^{27}}$ Назаров А.И. Прогнозирование H — индекса геомагнитной активности на основе влияния сил гравитации планет солнечной системы». "Innovations in Science and Technologies" scientific electronic journal ISSN: 3030-3451 <u>www.innoist.uz</u>. Volume 2, №2, Fevral, 2025. C. 259-268.

- 1. Системный анализ геомагнитной активности показал, что имеется влияние сил гравитации планет солнечной системы на индексы геомагнитной активности.
- 2. Предварительная обработка показала, что медианная предобработка экспериментальных данных повысила устойчивость регрессионных моделей.
- 3. Произведен расчет сумм проекций результирующей силы гравитации сил планет Солнечной системы и определены их корреляционные связи с индексом Z.
- 4. Разработаны статистические модели долгосрочного прогноза индекса Z трехчасового разрешения на основе суммы проекций результирующей силы гравитации планет Солнечной системы.
- 5. Разработаны алгоритмы и программа по прогнозированию индекса Z на основе их корреляционных связей со значениями суммы проекций гравитационных сил планет Солнечной системы.

В периоды магнитных бурь рекомендуется скорректировать максимальную применимую частоту радиосигнала для обеспечения устойчивости коротковолновой связи.

V. СПИСОК ЛИТЕРАТУРЫ

- 1. Амиантов А. С., Зайцев А. Н., Одинцов В. И., Петров В. Г. Вариации магнитного поля Земли. М., 2001.
- 2. Константиновская Л.В. Положение планет и долгосрочное прогнозирование. Математические методы анализа цикличности в геологии, вып.6, РАЕН, М., 1994, с.113–117.
- 3. Назаров А.И. Прогнозирование чисел Вольфа без процедур экстраполяции. "Innovations in Science and Technologies" scientific electronic journal ISSN: 3030-3451 www.innoist.uz. Volume 1 6 OCTOBER, 2024.
- 4. Cartwright D.E., Tayler R.I. New Computations of the Tide–generating Potential. Geophys. J. Roy. Astron. Soc., 23, 45–47 (1971).
- 5. Назаров А.И. Прогнозирование H индекса геомагнитной активности на основе влияния сил гравитации планет солнечной системы». "Innovations in Science and Technologies" scientific electronic journal ISSN: 3030-3451 www.innoist.uz. Volume 2, \mathbb{N}_2 , Fevral, 2025. C. 259 268.