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Abstract. We consider a family of parameter-dependent discrete Schrédinger operators
corresponding to the Hamiltonian of a system of three arbitrary particles (either fermions or bosons)
with masses my; = m, = o and ms < 0, on the integer lattice, Z°. The interactions of particles are
described via zero-range attractive forces. Using the direct-integral decomposition method, the three-
particle problem is reduced to the study of simpler two-particle Schrédinger operators, called the
channel (or fiber) operators. Using the channel operators, we find that the essential spectrum consists
of a finite union of real segments.
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I. INTRODUCTION

The study of systems consisting of three particles with various masses and
interaction energies has long been of particular interest in both physics and
mathematics. Three-particle systems exhibit physical phenomena that do not arise in
two-particle systems. One such phenomenon is the Efimov effect [1], wherein three
identical bosons can form bound states even though the interaction between any two of
them 1is insufficient to form a bound pair. Equivalently, under certain conditions, the
corresponding three-body Schrodinger operators may possess infinitely many
eigenvalues accumulating at the edges of the essential spectrum. Efimov’s theoretical
predictions have been experimentally confirmed in ultracold gases of caesium atoms
[2]. The existence of the Efimov effect for discrete Schrodinger operatorseb”’lattice
analogues of continuous Schrodinger operatorse’b’has also been established [3, 4, 5].

In recent years, the spectral properties of discrete Schrodinger operators on
lattices have been extensively investigated for various one-, two-, and three-particle
systems (see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]). In Ref. [6], three-particle
Schrodinger operators describing a system of two light particles and one heavy particle
on the three-dimensional lattice Z3 were studied. Descriptions and estimates for the
essential spectrum were obtained.

In this paper, we study a Hamiltonian of the form H = H, — V, where H, is a
non-perturbative operator and V is a potential function, corresponding to a system of
two heavy (infinite-mass) and one light (finite-mass) particles on Z3. The particles
interact via parameter-dependent short-range pair potentials. This model operator is
significant in solid-state physics [3, 4]. The spectral properties of the discrete
Schrodinger operator H are analyzed, with particular attention to its discrete spectrum,
which exhibits features not present in systems consisting solely of light particles (see,

e.g., [21]).
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The infiniteness of the discrete spectrum has been demonstrated in the one-
dimensional case in [22], and in the two-dimensional case in [23]. Although a similar
approach is employed for the three-dimensional case, the problem becomes
substantially more challenging due to the convergence properties of the integrals over
T3. This, in turn, allows for the possible existence of threshold resonances of the
operator H, in addition to eigenvalues. We establish that, depending on the interaction
energies, infinitely many eigenvalues may emerge either from both threshold
eigenvalues and threshold resonances, or solely from threshold eigenvalues.

Unlike for the continuous case, the discrete three-particle Hamiltonian operator
H is not rotationally invariant. However, using the technique of separation of variables,
it can be represented as a direct integral of a family of bounded discrete Schrodinger
operators H(K), K € T4, called the fiber operators [5, 17, 18]. In physical literature, K
is referred to as a quasi-momentum. As a result, the study of the spectrum of the three-
particle Schrédinger operators is reduced to the study of the fiber operators H(K), K €
Te. According to the boundedness of the operator H(K), its essential spectrum,
0.ss(H(K)), consists of a union of at most countably many bounded segments (see [19,
20]). In our work, we study the essential spectrum of parameter-dependent discrete
Schrodinger operators corresponding to the Hamiltonian of a system of three arbitrary
particles (either fermions or bosons) with masses m; = m, = o and my < ©0, on the
integer lattice, Z3.

The plan of the paper is as follows. In section 1, the Hamiltonian of a system of
three particles is described in coordinate and momentum spaces as bounded self-adjoint
operators. We also give the decomposition of the two-particle and three-particle energy
operators into von Neumann direct integrals. In section 2, we present the channel
operators, two-particle discrete Schrodinger operators h,(k),k € T3, a = 1,2,3,
corresponding to the three two-particle subsystems of the three-particle system and
their properties. In section 3, the main result describes the essential spectrum of H(K)
in terms of the spectra of the channel operators. The last section is conclusion.

Throughout the paper we adopt the following notations: Z3 is the integer lattice
of dimension three, T® = R3/(2nZ)3® = (—m, m]? is the three-dimensional torus (the
first Brillouin zone, i.e., the dual group of Z®) equipped with the Haar measure, the
subscripts a, B,y € {1,2,3} are pairwise different numbers.

II. Three-particle discrete Schrodinger operator on the lattice Z3

II.1 Coordinate representation

We first describe the three-particle system for particles of arbitrary mass. In
coordinate representation, the total Hamiltonian H associated with a system of three
particles moving on the three-dimensional lattice Z> and interacting via the short-range
pair potentials is defined in £#2((Z3)3) as

H=H,-7,
where
Hy:=

L AQIQI+— IRAQI+—IQRI®A
2mq 2my 2maq
and

]?::]71"‘]72 +f/\'3.
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Here m,, is the mass of the particle @, @ = 1,2,3, [ is the identity operator in £%(Z3),
and A is the standard discrete Laplacian acting as a multidimensional Laurent-Toeplitz-
type operator in £2(Z3),

Af(P):= Zsers ES)f (p +5), [ € £3(2%),

with
6, if s=0
£(8) =4 =1, if |s|=1,(1.1)
0, if Is|>1

and the pair-potential V,, which describes the interaction between particles £ and y, is
a multiplication operator by the Kronecker delta function of mass y, (¢, > 0),

(Vaf ) (X1, %2, X3) = U Oy, [ (X1, %2,%3), [ € £2((Z°)°), (x1,%2,%3) €
z*)°.

We note that under these conditions, the total Hamiltonian H is a bounded self-
adjoint operator in £2((Z3)3).
1.2 Momentum representation
The three-particle system in momentum space is represented by the Hamiltonian
H=FAF; as
H=H,—-V,
with
Hs = FaloF5t, V =FVFst,
where F; is the standard Fourier transform and F3 1 is its inverse.
Then, the free Hamiltonian H, 1s a multiplication operator
(Hof)(®) = (e1(p1) + &2(p2) + £3(03))f ), P = (P1, P2, P3) € (T%)%,
where the real-valued continuous function &, (a=1,2,3), called the dispersion relation
of the a-th normal mode associated with the free particle @, is defined as

1 -
£a(P) = —€(P), €(p) = j=y (1 — cosp?), p = (pW,p®,p®) €
T3. (1.2)
The perturbation operator V is of the form V = V; + V, + V5, where
Ve (@) = 555 Jorsys SPa = 4)8p + 0y — dp —

a)f (41, 92,93) dq:1dq2dqs, [ € L*((T*)?),
with §(-) being the Dirac delta function.
1.3 Decomposition of H and representations of fiber operators
Let {U}cz2 be the abelian group of the shift operators on the Hilbert space

22((Z%)%),

(Usf) (%1, %2, %3) = (%1 + 5,%5 + 5,%3 +5), X1,%5,%3,5 € Z°.
Via the Fourier transform F5, the operator U, s € Z? is unitarily equivalent to a

unitary multiplication operator Uy acting in LZ((T3)3) as
(Usf) (1, D2, p3) = e 7EP1¥P2¥P) f (py, py, p3), f € L2((T3)%).
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Let map: (T3)3 - (T%)2, a, B € {1,2,3} be the projection function
Ta,g(P1,P2,P3) = (Pas Pp)-

For a given K € T3, define the subset F c (T3)3 as
F:= {(p1, P2, p3) € (T%)°: py + po +p3 = K}
Let ,px be the restriction of 7,5 onto Fy,
Tapr: Fx = (T*)?, a, B € {1,2,3}.
Then, the function 7, 1s a bijective map with the inverse 7, :%K: (T3)? - Fg defined
as
(Ta) ™ ParPp) = P P, K — P — Dp)-
Hence, for any K € T3, Fy is homeomorphic to (T3)?2.

We have the following decomposition of the space L?((T3)3) into the direct

integral

L2((T%)°) = [yeqs @ LA (F)dK.  (1.3)
Correspondingly, the operator U, s € Z* can also be decomposed into the direct
integral

Us = Jyers ® Us(K)AK,
where

Us(K) = 7602 s,
with I;2 g, being the identity operator on the Hilbert space L?(Fg). Obviously, the
Hamiltonian H commutes with the operators Ug for any s € Z3, hence by [24, Theorem
XII1.84] the operator H can be rewritten as the von Neumann direct integral

H = fKeTg @ H(K)dK
associated with the decomposition (??).

In the physical literature, the parameter K € T is called the three-particle
quasi-momentum and the corresponding operators H(K), K € T3, are called the fiber
operators. For a given K € T3, the fiber operator H(K) acts in L?(Fy) as

H(K) = Hy(K) =V,
where

Ho(K)f () = (61(p1) + €2(p2) + €3(p2))f (D), P = (P1,P2.P3) €
Fg, f € L*(Fg)

and

V = V]_ + V]_ + V3
with

~ 1
(Vaf)(parpﬁ’ p’y) = Wfr[[@ f(pm t»pﬁ + Py — t)dt:f € LZ(IFK)’
Using the unitary operator

Uapr: L* (Fg) = L*((T°)?), Uqgpr(g) = g ° (Tapr)™", @B =
{1,2,3}, a # B,
where

R-CISK: IFK e r]I‘3! (ﬂ-aBK)(pa!pBrp}/) = (pa! pﬁ)r
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we define the momentum representation of the fiber operator H(K) as
H(K) = UagH(K)Ugg-

The operator H(K), K € T3 is of the form
H(K) =Ho(K) =V, =V, = Va.

In the coordinates (p,q), P = Pa,q = Pp, the operators Hy(K) and V,, are
defined on the Hilbert space L,((T3)?) by

Ho()N (@) =EE; p,0)f (0, @), [ € L((T*)?), (1.4)

and

V)@, 4) = 5 Jys [0, )G, [ € Ly((T*)?), @ =1,23,
(1.5)

respectively, where
E(K;p,q) = ea(p) +£3(q) + & (K —p —q).

In what follows, any operator unitarily equivalent to H(K) will be called the
three-particle discrete Schréodinger operator. We use its various representations
according to the convenience.

II. Channel Operator
Consider the operators H,(K),K € T3, a = 1,2,3, acting on the Hilbert space
L*((T3)?) as
Ho(K) = Ho(K) — Vg,
where Hy(K) and V,, are defined in (1.4) and (1.5), respectively. H,(K), K € T2 are
sometimes refferred to as the cluster operators corresponding to the decomposition
{{a}, {B.v}}. @, B,y € {1,2,3} [20].
The decomposition of the space L?((T3)?) into the direct integral
2((T%)?) = [y © L2(T%)dp
allows decomposing H, (K) into the direct integral
Hy(K) = fpe’ﬂ‘fi D (hac(K —P)+ & (p)l)dp, (2.1)
where h,(k), k€ T® (a=1,23) is the two-particle Schrodinger operator
corresponding to the subsystem {f3,y} of the three-particle system defined by
h,(k) = h2(k) —v,, k € T3. (2.2)
The operators h2 (k) and v, are defined on the Hilbert space L, (T?) as
(h& NP = E®)f @), f € LA(T?),

and

Waf)(P) = s Jys F(@da, [ € LX(T),p €T,
respectively, where
EXV(p) = eg(p) +&,(k—p), pET. (23)
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2.1 Spectral properties of the two-particle discrete Schrodinger operators when
m1=m2=003nd0<m3<00
In this subsection, we study discrete spectrum of the operators h, (k), k € T3.
Withm,; = m, = c0and 0 < m; < o0 and the representation (1.2), the functions
(2.3) can be written as
1 2 3
ES®) = EX () = e(k —p)/ms, E () =0, p €T
Consequently, since the potentials v,, a = 1,2,3 have a convolution-type
property, all three two-particle Schrodinger operators depend on the quasi-momentum
k € T3,
hl: = hl(k), hz: = hz(k), h3: — ha(k).
The operators hy(k), h,(k) and h3(k) act on f € L*(T?) as
hae(R)f(P) = &3(P)f(P) — Waf)(P), @ = 1,2, h3(k)f(p) =

—3/)()-
We note that if u; = p,, then h; = h,.

As v, (a = 1,2,3) 1s a finite rank operator, according to Weyl theorem, the
essential spectrum o.4(h,(k)) of the operator h,(k) in (2.2) coincides with the
spectrum o (h%(k)) of the non-perturbed operator h% (k). More specifically,

Tess(ha(K)) = [EX2 (), E&) ()],

min ' Hmax
where

Epin(K) = MnE @), B () = maxE" (p).

Therefore, in our case we have

Oess(h1(k)) = Oess(ho(k)) = [0,6/m3] and  0ees(h3(k)) = {0}

The Fredholm determinants associated with the operators h,(k), @« = 1,2 are
defined as

— 1 _ _Ha ds _
Ay(z)=1 2 T z € C\[0,6/m3], a=1,2.

We note that the eigenvalue equation, h,(k)f = (h2(k) — v,)f = zf. is
equivalent to f = (hQ(k) — z)~'v,f. Therefore, the we have the following lemma.
Lemma 2.1 Let @ = 1,2. The number z € C\[0,6/m3] is an eigenvalue of
h, (k) if and only if
A, (z) = 0.
The solution € € C of the equation A,(z) = 0 and the eigenvalue f € L2(T3) are
connected by the relations
C=v,f and [ =(h2k) —2z)"1C.
Denote

i | ds "1
Ho = ((27:)3 f'ﬂ'3 ag(s)) ’

Lemma 2.2 a) Let a« = 1,2. The operator h,(k) has a unique simple eigenvalue
Z = Z,, not depending on k € T3, if Ly > Wo, and has no eigenvalues if 0 < i, < Uo.
b) h;(k) has a unique simple eigenvalue z = —5.
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Proof. a) According to the previous lemma, we consider zeros of A,(-). The
function A, (+) is monotonic decreasing in (—0, 0) and lim,_,_ A, (2) = 1. Therefore,
it is easy to see that it has a simple zero if the limit lim,_,o_A,(2) = 1 — u, /Mo 1S
negative, and no zeros otherwise.

b) From the definition, we have

ha(K)f = =vsf = = %5 fis F(@)dq
Therefore, h;(k)f = zf yields z = —pu;.

The next lemma is a summary of the results of this section.
Lemma 2.3 Fora = 1,2, we have

J(ha (k)) B {{Za} U 60,6/??13], lf Hea > Ho, i
where z, € (—,0), and

o(h3(k)) = {—us} U {0}.

2.2 The spectrum of H,(K)
The direct integral representation (2.1) of the operator H, (K) yields (see Refs.
[21]) the relation

0(Hy(K)) = Opwo(He(K)) U Otpree (He (K)), (2.4)
where

Orwo (Ha(K)) = UpE’]I‘3 {ouise (i (K= p)) )
€q (p)}r Othree (Ha (K)) = UpE']I‘3 {o-ess (ha (K - p)) + &4 (p)}

According to Lemmas 2.2 and 2.3, and the relations & (p) = &,(p) = 0 and
&3(p) = €(p)/ms, we obtain

: ' 0 a <
Orwo (He(K)) = {?Za}: i1 ==

: . =12
if  Uag> HUo

6
Grwo (H3(K)) = |~pts, 7= = .
and
6
O-three(Ha(K)) = [0: E] ; =123

These imply the following lemma.
Lemma 2.4
For every K € T3, the following relations hold:

6 :
[O’E:l ’ lf 0 < “a g lu’O
6 :
{Za:} U [0;;3'] ’ lf Ha = Ho
6 6
o(Hs (K)) = |~ps, 7 = ps| U 0,7
where z, € (—,0), @ = 1,2 is an eigenvalue of h,(k), « = 1,2.

o(Hy(K)) = ;e =12
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III. The essential spectrum of H(K)

One of the remarkable results in the spectral theory of multi-particle continuous
Schrodinger operators is the description of the essential spectrum of the Schrédinger
operators in terms of cluster operators (the HVZ-theorem. See Refs. [20, 21] for the
discrete case and [25] for a pseudo-relativistic operator).

Lemma 3.1 For every K € T3, the essential spectrum 0,5;(H(K)) of H(K) is
the union of the spectra of the channel operators H,(K) = Hy(K) — UV, @ = 1,2,3,
ie.,

Ocss (H(K)) = 0 (Hy(K)) U a(Hz(K)) U o(Hz(K)).
The proof can be found in Refs. [20] and [21].

Therefore, according to Lemma 2.4, the structure of the essential spectrum of
the operator H(K) can be described by the following theorem.

Theorem 3.2 Let u, >0, a = 1,2, and u; = 0. For the essential spectrum of
the main operator H(K), we have

6 6

Ooss (H(KD) = |0,22| U (A U Az U | —pis, - — s,
where

A _{fa, if 0<u, < U

“ {Zg}’ if Ha > Ho,
Particularly, we have
6 : 6
Ooss (H(K)) =Ny UA, U |3, =], if 0<ps <2,

mg

6 6 . 6
Oess (H(K)) =A1UA2U[_H3,m_3—H3]U[0,m—3], if ps >n_13'

=12

IV. Conclusions

We studied the parameter-dependent discrete Hamiltonian corresponding to the
system of two heavy and one light particles of arbitrary nature (either bosons or
fermions) on Z3. The interactions between the particles were described via pairwise
zero-range (contact) attractive forces. Using the direct-integral decomposition method,
the three-particle problem was reduced to the study of simpler two-particle Schrédinger
operators, called the channel (or fiber) operators. Using the channel operators, we
found that the essential spectrum consists of a finite union of real segments.
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